скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Литература - Другое (книга по генетике)

p>ADA-дефицита у второй 9-летней пациентки. После 11 инфузий

трансдуцированных аутологичных T-клеток состояние этой де-

вочки также заметно улучшилось и отмечалась полная нормали-

зация соответствующих биохимических и иммунологических пока-

зателей. Таким образом, необходимо еще раз отметить, что при

лечении обеих пациенток был достигнут очевидный клинический

эффект (Anderson,1992; Culver, 1994).

Однако, в обоих случаях не все иммунные функции восста-

навливались полностью. По-видимому, это было связано с тем,

что коррекция генетического дефекта проводилась в зрелых

T-лимфоцитах. В связи с этим предложены программы генной те-

рапии с помощью реинфузии смешанной популяции трансдуциро-

ванных T-лимфоцитов и перефирических стволовых клеток крови.

Возможность изоляции и трансдукции таких тотипатентных ство-

ловых клеток показана в экспериментах на приматах.

Успех первых клинических испытаний явился мощным стиму-

лом для ускорения развития новых генотерапевтических методов

применительно к другим наследственным заболеваниям. В

Табл. 92 представлен список болезней, для которых принципи-

ально возможен генотерапевтический подход и генокоррекция

наследственного дефекта с большой вероятностью будет осу-

ществлена уже в обозримом будущем, а также те заболевания,

для которых уже имеются официальныо утвержденные протоколы и

которые находятся на разных стадиях клинических испытаний.


Таблица 9.2. Наследственные заболевания, генокоррекция кото-

рых находится на стадии клинических испытаний (КИ), экспери-

ментальных разработок (ЭР) и принципиально возможна (ПВ).

(Сulver, 1994; Lowenstein, 1994)


---T----------------T-----------------------T----------------T----¬

¦ ¦Болезнь ¦ Дефектный ген ¦ Клетки-мишени ¦Ста-¦

¦ ¦ ¦ ¦ ¦дия ¦

+--+----------------+-----------------------+----------------+----+

¦1 ¦Иммунодефицит ¦аденозиндезаминаза ¦лимфоциты ¦ КИ ¦

¦2 ¦Иммунодефицит ¦пуриннуклеозид- ¦лимфоциты ¦ ПВ ¦

¦ ¦ ¦фосфорилаза ¦ ¦ ¦

¦3 ¦Семейная гипер- ¦рецептор липопротеинов ¦гепатоциты ¦ КИ ¦

¦ ¦холистеринемия ¦низкой плотности ¦ ¦ ¦

¦4 ¦Гемофилия В ¦фактор 1Х ¦фибробласты ¦ КИ ¦

¦5 ¦Гемофилия А ¦фактор Y111 ¦миобласты, ¦ ЭР ¦

¦ ¦ ¦ ¦фибробласты ¦ ¦

¦6 ¦Болезнь Гоше ¦в-глюкоцереброзидаза ¦макрофаги, ¦ КИ ¦

¦ ¦(сфинголипидоз) ¦ ¦стволовые клетки¦ ¦

¦7 ¦Болезнь Хантера ¦идуронат-сульфатаза ¦макрофаги, ¦ ПВ ¦

¦ ¦ ¦ ¦стволовые клетки¦ ¦

¦8 ¦Синдром Гурлера ¦L-идуронидаза ¦макрофаги, ¦ ПВ ¦

¦ ¦ ¦ ¦стволовые клетки¦ ¦

¦9 ¦Эмфизема легких ¦альфа-1-антитрипсин ¦лимфоциты ¦ ЭР ¦

¦10¦Муковисцидоз ¦CF-трансмембранный ¦эпителий бронхов¦ КИ ¦

¦ ¦ ¦регулятор ¦ ¦ ¦

¦11¦Фенилкетонурия ¦фенилаланингидроксилаза¦гепатоциты ¦ ЭР ¦

¦12¦Гипераммонемия ¦орнитинтранскарбамилаза¦гепатоциты ¦ ПВ ¦

¦13¦Цитрулинемия ¦аргиносукцинатсинтетаза¦гепатоциты ¦ ПВ ¦

¦14¦Мышечная дист- ¦дистрофин ¦миобласты, ¦ ЭР ¦

¦ ¦рофия Дюшенна ¦ ¦миофибриллы ¦ ¦

¦15¦Талассемия ¦бета-глобин ¦эритробласты ¦ ЭР ¦

¦16¦Серповиднокле- ¦бета-глобин ¦эритробласты ¦ ЭР ¦

¦ ¦точная анемия ¦ ¦ ¦ ¦

¦17¦Респираторный ¦сурфактант ¦эпителий бронхов¦ ЭР ¦

¦ ¦дистресс-синдром¦белок В ¦ ¦ ¦

¦18¦Хронический ¦NADPH-оксидаза ¦гранулоциты ¦ ЭР ¦

¦ ¦грануломатоз ¦ ¦ ¦ ¦

¦19¦Болезнь ¦белок-предшественник ¦нервные клетки ¦ ЭР ¦

¦ ¦Альцгеймера ¦в-амилоида (ААР) ¦ ¦ ¦

¦20¦Болезнь ¦тирозин-гидроксилаза ¦миобласты, ¦ ЭР ¦

¦ ¦Паркинсона ¦ ¦фибробласты ¦ ¦

¦ ¦ ¦ ¦нервные клетки ¦ ¦

¦21¦Метахромати- ¦арилсульфатаза А ¦стволовые клетки¦ ПВ ¦

¦ ¦ческая лейко- ¦ ¦крови, ¦ ¦

¦ ¦дистрофия ¦ ¦нервные клетки ¦ ¦

¦22¦Синдром Леш- ¦гипоксантин-фосфо- ¦нервные клетки ¦ ПВ ¦

¦ ¦Нихана ¦рибозил трансфераза ¦ ¦ ¦

L--+----------------+-----------------------+----------------+-----


Как следует данных Таблицы 9.2, на стадии клинических

испытаний в 1994г. уже находились 5 моногенных заболеваний.

Для 10 генных болезней проводились экспериментальные иссле-

дования и отрабатывались требования, необходимые для получе-

ния официального разрешения клинических испытаний (см.9.1).

Исследования по остальным заболеваниям находятся на началь-

ных этапах. Список таких заболеваний очень быстро увеличива-

ется. Обращает на себя внимание, что первые программы по

генной терапии связаны с модификацией гемопоэтических клеток

(Wivel, Walters, 1993). Клетки крови наиболее доступны для

генетических манипуляций. После изоляции различные типы кле-

ток крови могут быть легко размножены, подвергнуты трансфек-

ции in vitro, а затем возвращены пациенту. Генетической мо-

дификации могут быть подвергнуты не только зрелые клетки

(лимфоциты, макрофаги), но и их предшественники - стволовые

клетки. Важным обстоятельством, в этой связи, является то,

что процедура трансплантации клеток костного мозга уже широ-

ко используется в клинике. Разработаны и достаточно эффек-

тивные методы выделения стволовых гемопоэтических клеток че-

ловека (Berardi etal.,1995). В экспериментах на животных по-

казано, что модифицированные клетки как миелоидного, так и

лимфоидного рядов могут сохраняться в кровотоке на протяже-

нии более двух лет после аутологичной пересадки клеток кост-

ного мозга, трансдуцированных in vitro. Путем трансфекции

клеток крови соответствующими генами можно лечить не только

собственно заболевания крови, но и использовать их для лече-

ния многих других заболеваний как моногенной природы

(Табл. 9.2), так и различных опухолей и инфекций (см.ниже).

Другими достаточно универсальными реципиентами чужерод-

ных генов могут быть фибробласты и мышечные клетки (миоблас-

ты, миофибриллы). Они могут быть использованы для тех забо-

леваний, где необходима коррекция генов, белковые продукты

которых должны поступать в сыворотку крови или дифундировать

в соседние клетки. Особенно удобны для целей генной терапии

скелетные мышцы, в которых благодаря отсутствию эндонуклеаз-

ной активности (см.раздел 9.4.2) принципиально возможен пе-

ренос генов in vivo путем прямой иньекции экзогенной ДНК.

Инъецированная в мышцы ДНК способна экспрессироваться в мио-

фибриллах находясь в неинтегрированном, эксрахромосомном

состоянии. Белковые продукты экспрессии в течение длительно-

го времени после трансдукции будут поступать в кровь. Про-

должительность экспрессии значительно увеличивается, если

генетическую модификацию производят в аутологичных миоблас-

тах, которые после этого инъецируют в зрелую мышцу. Эти осо-

бенности уже позволили начать эксперименты по генной терапии

таких заболеваний как гемофилии А и В, дефицит антитрипсина,

диабет, врожденный дефицит гормона роста и даже болезнь Пар-

кинсона (Culver, 1994; Lowenstein, 1994). Достаточно удобны-

ми для генетических модификаций оказались и фибробласты ко-

жи, в первую очередь, благодаря легкости генноинженерных ма-

нипуляций ex vivo.


Раздел 9.6. Генотерапия ненаследственных заболеваний:

опухоли, инфекции.


Параллельно с развитием исследований в области генокор-

рекции наследственных дефектов успешными также оказались по-

иски методов терапевтического использования смысловых после-

довательностей ДНК для лечения ненаследственных заболеваний

и, главвным образом, злокачественных опухолей и вирусных ин-

фекций. Существенно, что именно в этих разделах патологии

поиски путей генокоррекции проводятся особенно интенсивно, а

число уже одобренных протоколов клинических испытаний во

много раз превышает число таковых для лечения моногенных бо-

лезней (см.Рис. 9.1). Такое положение дел, по-видимому,

прежде всего объясняется широкой распространенностью онколо-

гических заболеваний и отсутствием достаточно эффективной

терапии. В Табл. 9.3 перечислены основные методологические

подходы к генотерапии различных опухолей, разработанные и

широко используемые уже на современном этапе. Многие из этих

подходов вполне приложимы и для борьбы с наиболее серьезными

инфекционными заболеваниями, например, со спидом.


Таблица 9.3. Основные методологические подходы в генокоррек-

ции онкологических заболеваний.


---------------------------------T-----------------------------¬

¦ П Р И Н Ц И П ¦ ВВОДИМЫЕ ГЕНЫ ¦

+--------------------------------+-----------------------------+

¦1. Повышение иммунореактивности ¦ гены чужеродных ¦

¦ опухоли ¦ антигенов, цитокинов ¦

¦2. Генетическая модификация ¦ гены цитокинов, ¦

¦ иммунных клеток ¦ ко-стимуляторов ¦

¦3. Инсерция генов "чувствитель- ¦ гены тимидин-киназы HSV, ¦

¦ ности" либо генов "самоубийц"¦ цитозин дезаминазы ¦

¦4. Блок экспрессии онкогенов ¦ антисмысловые Ki-ras мРНК, ¦

¦ ¦ гены внутриклеточных антител¦

¦5. Инсерция генов-супрессоров ¦ р53 ¦

¦ опухолей ¦ ¦

¦6. Защита нормальных клеток от ¦ гены лекарственной ¦

¦ химеотерапии. ¦ устойчивости тип 1. ¦

¦7. Индукция синтеза противоопухо¦ гены интерлейкина-2, ¦

¦ левых в-в нормальными клеткам¦ интерферона ¦

¦8. Продукция противопухолевых ¦ вакцины типа БЦЖ, экспресси-¦

¦ рекомбинантных вакцин. ¦ рующей опухолевой антиген ¦

¦9. Локальная радиопротекция нор-¦ гены трансферазы, ¦

¦ мальных тканей с помощью ¦ глутатион синтетазы ¦

¦ антиоксидантов. ¦ ¦

L--------------------------------+------------------------------


Подробный анализ используемых при этом подходов и ре-

зультаты первых клинических испытаний выходит за рамки наше-

го изложения. Однако, материал этот настолько интересный и

многообещающий, что мы позволим себе на нескольких примерах

охарактеризовать основные принципы построения таких геноте-

рапевтических программ.

Как упоминалось ранее (см. 9.1), перенос гена в орга-

низм человека был осуществлен в 1989 году в большей степени

в исследовательских, а не в терапевтических целях. Это был

маркерный прокариотический ген neo, сообщающий клеткам ус-

тойчивость к неомицину. Он был введен пациенту, страдающему

злокачественной меланомой, в составе трансдуцированных

TIL-клеток (Т -лимфоцитов, полученных из опухолевых тканей

больного). В 1986г. вскоре после идентификации этого нового

класса иммунных клеток, была предпринята попытка лечения ме-

ланомы путем аутологичной внутривенной инфузии TIL-клеток,

предварительно выделенных из опухолей пациентов и интенсивно

наращиваемых in vitro в присутствии ростового фактора IL-2.

Примерно у трети пациентов лечение оказалось эффективным,

хотя в последующем наблюдали значительное число рецидивов

заболевания. Для анализа причин терапевтического эффекта TIL

-клеток и совершенствования методики лечения меланомы необ-

ходимо было исследовать устойчивость вводимых T-лимфоцитов и

их миграцию в организме больного. С этой целью была произве-

дена маркировка используемых для лечения TIL-клеток путем их

трансдукции в культуре ретровирусным вектором, несущим ген

neo, с последующим отбором неомицин-устойчивых клонов и вы-

ращиванием их на среде G418. Результаты исследований показа-

ли, что реинфузированные G418-устойчивые TIL-клетки действи-

тельно проникают в опухоль и могут быть обнаружены там в не-

большом количестве даже спустя 9 недель после введения. Най-

дены отличия субпопуляции T-лимфоцитов в опухоли от общей

популяции инфузированных TIL-клеток.

После успешного испытания переноса маркерного гена neo

в опухолевые ткани путем аутологичной реинфузии трансфециро-

ванных T-лимфоцитов лечение меланомы было дополнена введени-

ем в вектор мышиного гена, контролирующего продукцию, так

называемого фактора некроза опухоли - TNF. Предолагалось,

что локальная секреция этого токсичного для клеток белка в

опухолевых тканях будет способствовать формированию иммунно-

го ответа. Опасность данной терапевтической процедуры обус-

ловлена возможностью разрушения TIL-клеток в печени, мозге и

легких. Поэтому экспрессия TNF-гена под гетерологичным про-

мотором может оказать сильный токсический эффект в этих ор-

ганах. Первые клинические испытания описанной схемы лечения

начаты в январе 1991 года в Национальном Институте Здоровья

(NIH) США.

Другая программа генной терапии, предложенная для лече-

ния меланом, основана на стимуляции противоопухолевого имму-

нитета, опосредованного T-лимфоцитами. Для этого в изолиро-

ванные опухолевые клетки пациента вводят TNF- или IL2-ген

или какие-либо другие гены, секретирующие цитокины, и затем

проводят иммунизацию пациента путем подкожного введения

трансдуцированных клеток. Эта процедура сама по себе может

привести к рассасыванию первичной опухоли или может быть ис-

пользована для изоляции более эффективных TIL-клеток из лим-

фоузлов, вблизи от места инъекции. Подобная иммунизация мо-

жет быть рекомендована для предотвращения рецедивов у паци-

ентов, подвергавшихся другим курсам противоопухолевой тера-

пии. Первая попытка прямого переноса гена в опухолевые клет-

ки пациента без их предварительной изоляции также была

предпринята с целью формирования иммунного ответа против

злокачественной меланомы. Процедура включала прямую иньекцию

в опухоль липосом-плазмидного комплекса с геном, контролиру-

ющим отсутствующий у пациента антиген гистосовместимости

HLA-B7. Другой тип модификации опухолевых клеток основан на

введении в них гена тимидинкиназы Герпеса. Использованный в

работе ретровирусный вектор обеспечивал включение генной

конструкции только в активно пролифирирующие клетки, каковы-

ми и являются клетки опухоли. Впервые эта схема была апроби-

рована при лечении карциномы яичника. После интраперитоне-

альной аутологичной иньекции трансдуцированных клеток злока-

чественной карциномы пациентам назначали противогерпесный

препарат - ганцикловир, избирательно убивающий клетки, экс-

прессирующие ген вирусной тимидин-киназы. Противоопухолевый

эффект был обусловлен летальным действием токсина, образую-

щегося в модифицированных клетках и последующей иммунной ре-

акцией организма на опухолевые клетки.

Подходы, используемые для лечения вирусных инфекций пу-

тем введения в организм человека специфических нуклеиновых

кислот, очень разнообразны и основаны на детальном исследо-

вании молекулярных механизмов взаимодействия инфецирующих

агентов с клетками-хозяина. Мы лишь коротко перечислим ос-

новные принципы, используемые при разработке соответствующих

медицинских протоколов. Наибольшее количество противовирус-

ных программ генной терапии предложено в рамках борьбы со

спидом, хотя аналогичные методы разрабатываются для лечения

гепатита, цитомегаловирусных, герпесных и иных вирусных ин-

фекций. Одна из первых таких программ была направлена на

разрушение регуляторных механизмов репликации вируса иммуно-

дефицита - HIV, путем введения в T-лимфоциты от 20 до 50 ко-

пий TAR-гена, кодирующего активирующий элемент, критический

для переключения генетической программы клетки на вирусную

репликацию. Другая программа включала введение в T-лимфоциты

гена CD4 вирусного антигена для специфического связывания

HIV и выведения его в русло крови. Ряд программ основаны на

введении в T-клетки условно летальных генов, таких как ген

вирусной тимидинкиназы, с тем, чтобы предотвратить нежела-

тельные побочные эффекты в случае неконтролируемого размно-

жения этих клеток или слишком сильного их действия на

HIV-инфецированные клетки. Одним из направлений повышения

эффективности терапевтического использования T-лимфоцитов

для лечения спида является направленная модификация ex vivo

генов главного комплекса гистосовместимости и конструирова-

ние на этой основе "универсальных донорских" клеток. Так,

лишенные HLA-маркеров гетерологичные модифицированные

T-клетки могут быть трансплантированы пациентам без опасения

иммунологической несовместимости. Подобный подход может ока-

заться эффективным при необходимости гетерологичной транс-

плантации в терапевтических целях любых типов клеток. Прин-

ципиально иным способом борьбы с вирусными инфекциями явля-

ется введение в пораженные ткани антисмысловых последова-

тельностей, способных гибридизоваться с вирусами и, таким

образом, их нейтрализовывать (Cohen, Hogan, 1994; Wagner,

1994). Адресность доставки таких последовательностей может

быть достигнута путем их комплексирования с соответствующими

белковыми лигандами (см. 9.4.2).


Раздел 9.7. Некоторые этические и социальные проблемы

генной терапии.


Появление принципиально новых технологий, позволяющих

активно манипулировать с генами и их фрагментами, обеспечи-

вающими адресную доставку новых блоков генетической информа-

ции в заданные участки генома, совершило революцию в биоло-

гии и медицине. Как следует из вышеизложенного, сам ген все

чаще начинает выступать в качестве лекарства, применяемого

для лечения не только моногенных, но и многих других, в том

числе и значительно более распространенных недугов (опухоли,

инфекции). Не за горами применение генотерапии и для борьбы

с мультифакториальными заболеваниями (сердечно-сосудистые,

психические, эндокринологические и многие другие). Уже сей-

час, на современном уровне наших знаний о геноме человека

теоретически вполне возмножны такие его модификации путем

генной трансфекции, которые могут быть предприняты с целью

улучшения ряда физических (например, рост), психических и

интеллекуальных параметров. Таким образом, современная наука

о человека на своем новом витке развития вернулась к идее

"улучшения человеческой породы", когда-то постулированной

выдающимся английским генетиком Фрэнсисом Гальтоном и разви-

той его учениками и последователями (Карл Пирсон, Лионель

Пенроуз, Дж.Халдэйн и мн.др.). Дальнейший ход истории, как

известно, полностью дискредитировал саму идею "улучшения"

человеческой породы. Однако, грядущее "всевластие" человека

над собственным геномом заставляет вновь и вновь возвращать-

ся к этой теме, делают ее предметом постоянных оживленных

дискуссий в широкой и научной печати (Ledley, 1987; Ander-

son, 1992; Wivel, Walters, 1993; Culver,1994). Развернувшая-

ся в этой связи дискуссия позволяет подвести некоторые итоги

и сделать определенные прогнозы.

Уже сейчас не вызывает сомнения, что первоначальные

опасения, связанные с генной инженерией вообще и генной ин-

женерией человека в частности были неоправданны. После мно-

голетней дискуссии и всестороннего рассмотрения на разных

уровнях было признанным целесообразным применение генной те-

рапии для лечения многих заболеваний. Единственным и непре-

менным ограничением, сохраняющим свою силу и в современных

условиях, является то, что все генотерапевтические мероприя-

тия должны быть направлены только на конкретного больного и

касаться исключительно его соматических клеток.

По глубокому убеждению основных авторитетов генной те-

рапии (Фр.Андерсон, Т.Каски, Фр.Коллинс, Дж.Вильсон и

мн.др.), а также согласно существующим регламентациям соот-

ветствующих "разрешительных" комитетов по генно-инженерным

исследованиям (см. 9.1) современный уровень наших знаний не

позволяет проводить коррекцию генных дефектов на уровне по-

ловых клеток и клеток ранних доимплантационных зародышей че-

ловека. Причина этого - реальная опасность засорения гено-

фонда нежелательными искусственными генными конструкциями

или внесение мутаций с непредсказуемыми последствиями для

будущего человечества.

Вместе с тем, по мере совершенствования методов генной

терапии, появления новых технологий, связанных с созданием

более эффективных и безопасных векторных систем и более со-

вершенных генетических конструкций, стремительным ростом объ-

ема информации о структуре генома, картировании новых генов в

научной литературе все чаще и все настойчивее раздаются при-

зывы к возобновлению дискуссии о целесообразности генокоррек-

ции зародышевых и половых клеток человека (Wivel, Walters,

1993; Latchman, 1994).

Основным аргументом в пользу таких вмешательств являет-

ся тот вполне очевидный факт, что по мере того как все боль-

шее число наследственных заболеваний будет доступно эффек-

тивной генной терапии, все большее число особей, гомозигот-

ных по летальным мутантным генам, будет накапливаться в по-

пуляции. Соответственно, тем реальней будут ситуации, когда

оба супруга окажутся гомозиготными носителями мутантного ге-

на. В этом случае получение здорового потомства потребует

генетического вмешательства уже на ранних стадиях и, возмож-

но, будет вполне безопасной и реальной трансфекция гамет или

ранних зародышей.

Эксперименты на животных по созданию искусственных био-

логических моделей наследственных болезней (см.Главу VIII ),

а также первые клинические испытания по доимплантационной

диагностике генных болезней (Verlinsky, Kuliev, 1993; см.

Главу VI) убеждают в том, что такой генно-терапевтический

подход может быть реальным уже в ближайшем будущем. Вполне

естественно, что целесообразность его применения должна оп-

ределяться не только генно-инженерными возможностями, но и

его социальной значимостью и необходимостью. Вот только не-

которые вопросы, которые должны быть решены в рамках предла-

гаемой генетиками широкой дискуссии:

Сможет ли в будущем генная терапия обеспечить столь

полноценную генокоррекцию, которая не представит угрозы для

потомства?

В какой мере полезность и необходимость генотерапевти-

ческой процедуры для одной супружеской четы перевесят риск

такого вмешательства для всего человечества?

Сколь оправданы будут эти процедуры на фоне грядущего

перенаселения планеты ?

Как будут соотноситься генно-инженерные мероприятия на

человеке с проблемами гомеостаза общества и биосферы?

Таким образом, генетическая революция апофиозом которой

явилась генотерапия не только предлагает реальные пути лече-

ния тяжелых наследственных и ненаследственных недугов, но и

в своем стремительном развитии ставит перед обществом новые

проблемы, решение которых необходимо уже в ближайшем обозри-

мом будущем.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.