скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Литература - Другое (книга по генетике)

p>нуклеотидов ДНК или пар оснований составляет информационную

емкость молекулы, определяя порядок синтеза и аминокислотную

последовательность белков в соответствии с универсальным для

всех живых существ трехбуквенным - триплетным, генетическим

кодом (Табл.1.1). Дезоксирибонуклеиновые кислоты представля-

ют собой единственный тип молекул, способных к самовоспроиз-

водству или репликации, что и обеспечивает преемственность

генетической информации в ряду поколений. Записывается

последовательность ДНК слева направо (5' - 3') первыми заг-

лавными буквами соответствующих нуклеотидов, являющихся од-

новременно единицами измерения молекулы. Размеры ДНК могут

меняться в гигантских пределах от нескольких нуклеотидов до

миллиардов пар оснований (п.о.). В качестве единиц измерения

размеров ДНК используются также килобазы (kb) и мегабазы

(mb) - последовательности, соответствующие тысячи и миллиону

пар оснований, соответственно.

ДНК могут существовать как в виде однонитевых, так и в

виде двухнитевых молекул. Двухнитевые или двухцепочечные мо-

лекулы образуются за счет химического комплементарного спа-

ривания между аденином и тимином (А - Т) и между гуанином и

цитозином (Г - Ц). Эти водородные связи между парами нуклео-

тидов достаточно непрочные, так что цепи ДНК могут легко

диссоциировать - разделяться, и ассоциировать - соединяться,

при изменении температуры или солевых концентраций. При каж-

дом цикле ассоциаци - диссоциации или, как еще говорят, от-

жиге - плавлении, будет точно воспроизводиться двухнитевая

структура - дуплекс, устойчивость которого определяется со-

ответствием нуклеотидных пар. Наиболее устойчивы структуры,

представленные полностью комплементарными нитями ДНК. Про-

цесс образования дуплексов носит название гибридизации. Спо-

собность к комплементарному спариванию оснований - одно из

самых замечательных свойств ДНК, определяющих возможность ее

саморепликации и точного выбора специфических участков акти-

вации молекулы в процессе считывания генетической информа-

ции. Это свойтво широко используется в молекулярной биологии

для поиска и идентификации нужных последовательностей в ог-

ромных молекулах ДНК при использовании в качестве зондов ее

сравнительно небольших меченых фрагментов.

У человека большая часть ДНК- 3.2 миллиарда пар основа-

ний, находится в ядрах клеток в виде 46 плотно упакованных,

суперскрученных за счет взаимодействий с ядерными белками

структур, называемых хромосомами. Сравнительно небольшая

часть ДНК - около 5%, пристствует в митохондриях - органел-

лах цитоплазмы, обеспечивающих процессы дыхания и энерегети-

ческого обмена клеток эукариот. В большинстве соматических

клеток ДНК представлена в двух копиях - по одной в каждой

хромосоме. Таким образом, в клетках присутствуют 23 пары

хромосом, 22 из которых гомологичны друг другу - аутосомы, и

одна пара (X и Y) - половые хромосомы. Наличие Y хромосомы

определяет мужской пол особи. При записи нормального карио-

типа индивидуума указывается общее число хромосом и тип по-

ловых хромосом. Таким образом, нормальный кариотип мужчины -

46,XY, а женщины -46,XX. В процессе гаметогенеза происходит

случайное расхождение гомологичных хромосом в мейозе и в

каждой зрелой половой клетке - гамете, остается только 23

хромосомы, то есть гаплоидный набор хромосом. При этом в

каждой гамете сохраняется лишь одна половая хромосома - го-

носома. В яйцеклетках это X хромосома, тогда как сперматозо-

иды с равной вероятностью несут как X, так и Y хромосому, то

есть пол будущей особи детерминируется геномом сперматозои-

да. При оплодотворении диплоидный набор хромосом восстанав-

ливается. В соответствии с современными представлениями ге-

ном человека состоит из 25 хромосом, 22 из которых аутосомы,

2 половые хромосомы и одна митохондриальная . В каждой клет-

ках присутствует порядка 1000 митохондрий, а в каждом мито-

хондрионе содержится около 10 кольцевых митохондриальных

хромосом, сходнах с хромосомами бактерий. Таким образом, в

клетках присутствует около 1000 копий митохондриальных хро-

мосом.

В хромосомах эукариот ДНК находится в двухнитевой форме,

что обеспечивает возможность ее точной репликации при каждом

цикле деления клетки. Одна нить кодирующая или смысловая,

комплементарная ей нить - антисмысловая. Декодирование ин-

формации, заключенной в молекуле ДНК, или процесс транскрип-

ции, осуществляется за счет избирательного синтеза молекул

РНК, комплементарных определенным участкам ДНК, так называе-

мых первичных РНК транскриптов. Транскрибируемые участки ДНК

носят название генов. Рибонуклеиновые кислоты (РНК) по своей

структуре очень сходны с молекулами ДНК. Они также состоят

из четырех нуклеотидов, только одно из пиримидиновых основа-

ний - тимин, заменено на урацил и в сахарозном остове вместо

дезоксирибозы представлена рибоза. Молекулы РНК существуют

только в однонитевой форме, но могут образовывать дуплексы с

молекулами ДНК. После синтеза молекулы РНК претерпевают

достаточно сложную модификацию - процессинг. При этом про-

исходят изменения в концевых участках молекул и вырезаются

области, гомологичные интронам - некодирующим частям гена.

Этот процесс называется сплайсингом. В результате из первич-

ных РНК транскриптов образуются молекулы информационной или

матричной РНК (мРНК), представляющие собой непрерывную

последовательность нуклеотидов, гомологичную только экзонам

- смысловым участкам гена. Молекулы мРНК в виде рибонуклео-

протеиновых гранул выходят из ядра в цитоплазму и соединяют-

ся с рибосомами, где происходит процесс трансляции - синтез

полипептидной цепи. Трансляция мРНК происходит в точном со-

ответствии с генетическим кодом, согласно которому последо-

вательность из трех нуклеотидов РНК - кодон, соответствует

определенной аминокислоте или сигналу терминации синтеза по-

липептидной цепи (Табл.1.1). Реализация генетического кода

осуществляется с участием 20-ти типов транспортных РНК

(тРНК), единственных нуклеиновых кислот, содержащих в своем

составе наряду с нуклеотидами одну из аминокислот. тРНК име-

ют кленовообразную форму, в хвостовой части молекулы распо-

ложена определенная аминокислота, в точном соответствии с

последовательности из трех нуклеотидов в области, называемой

антикодоном. Прохождение мРНК по рибосоме является сигналом

приближения к рибонуклеопротеидному комплексу той тРНК, у

которой последовательность нуклеотидов в антикодоне компле-

ментарна кодирующему триплету мРНК. Таким образом транспор-

тируется соответствующая аминокислота и осуществляется пос-

ледовательный синтез полипептидной цепи. Митохондрии имеют

свою автономную систему белкового синтеза: рибосомальные

РНК, мРНК и транспортные РНК.

Генетический код универсален для всех живых существ -

это одно из его главных свойств. Небольшие отличия в струк-

туре кода найдены только для митохондриальной ДНК. Так в ми-

тохондриальном генетическом коде стоп кодонами являются

триплеты АГА и АГЦ, кодирующие аргинин в ядерной ДНК

(Табл.1.1). Универсальность генетического кода служит наибо-

лее веским аргументом в пользу гипотезы об едином источнике

возникновения жизни на земле и о филогенетическом родстве

всех видов живых существ. Кроме того, именно это свойство

обеспечивает возможность прочтения в любых модельных клеточ-

ных системах искусственно введенной генетической информации,

сконструированной из фрагментов ДНК разного видового про-

исхожденеия. Таким образом, вся генная инженерия основана на

универсальности генетического кода. Другим свойством генети-

ческого кода является его вырожденность, заключающаяся в

том, что все аминокислоты кроме двух кодируются несколькими

вариантами триплетов. Действительно, из 64 возможных комби-

наций нуклеотидных триплетов РНК три соответствуют термини-

рующим кодонам - ochre, amber и opal, остальные варианты

(61) кодируют 20 аминокислот, причем триплеты, кодирующие

одну и ту же аминокислоту, как правило, различаются по

третьему нуклеотиду в кодоне. Таким образом, зная нуклеотид-

ную последовательность кодирующего участка ДНК, можно одноз-

начно прогнозировать аминокислотную последовательность соот-

ветствующего полипептидного фрагмента, тогда как одна и та

же аминокислотная последовательность может кодироваться раз-

личным образом. При этом, число возможных вариантов кодирую-

щих ДНК резко возрастает с увеличением длины полипептида.

На следующем этапе полипептидные цепи транспортируются

к специфическим органеллам клетки и модифицируются с образо-

ванием зрелого функционально активного белка. В некоторых

случаях информация с молекул РНК может обратно транскрибиро-

ваться в молекулы ДНК. В частности, при обратной транскрип-

ции мРНК образуются молекулы комплементарной ДНК - кДНК, в

которой в зависимости от полноты процесса представлены

частично или полностью все смысловые кодирующие последова-

тельности гена. Рассмотренная схема реализации однонаправ-

ленного потока информации ДНК-РНК-Белок составляет основу

центральной молекулярно-биологической догмы - рис.1.1.

Более детально с процессами репликации, транскрипции,

процессинга и трансляции можно ознакомиться в многочисленных

руководствах по молекулярной биологии, цитологии и генетике

(Стент, Кэлиндер, 1981; Зенгер, 1987; Льюин, 1987).


1.2 Выделение ДНК, ее синтез и рестрикция.


ДНК может быть изолирована из любого типа тканей и кле-

ток, содержащих ядра. Этапы выделения ДНК включают быстрый

лизис клеток, удаление с помощью центрифугирования фрагмен-

тов клеточных органелл и мембран, ферментативное разрушение

белков и их экстрагирование из раствора с помощью фенола и

хлороформа, концентрирование молекул ДНК путем преципитации

в этаноле. Из 1 грамма сырой ткани или из 10!9 клеток обычно

получают 2 миллиграмма ДНК. У человека ДНК, чаще всего, вы-

деляют из лейкоцитов крови, для чего собирают от 5 до 20 мл

венозной крови в стерильную пробирку с раствором, пре-

пятствующим коагуляции (например, с глюгециром или гепари-

ном). Затем отделяют лейкоциты и разрушают клеточные и ядер-

ные мембраны добавлением буферных растворов, содержащих де-

натурирующие агенты. Наилучшие результаты при выделении ДНК

дает применение протеиназы-К с последующей фенол - хлоро-

формной экстракцией разрушенных белков. ДНК осаждают в эта-

ноле и растворяют в буферном растворе. Оценку качества экс-

трагированной ДНК проводят на основании измерения оптической

плотности раствора ДНК в области белкового и нуклеинового

спектров поглощения. В чистых образцах ДНК соотношение

А(260)/A(280) > 1.8. В противном случае процедуру очистки

необходимо повторять, так как для успешного использования и

хранения ДНK белки должны быть полностью удалены. Более под-

робно с методами выделения и очистки ДНК из различных тканей

можно ознакомиться в работах и руководствах, приведенных в

конце книги (Маниатис и др., 1984; Дейвис, 1990; Горбунова и

др., 1991).

В процессе сложного и многообразного функционирования

различные участки хромосом и ДНК претерпевают разнообразные

регулируемые и, в основе своей, обратимые изменения. Эти мо-

дификации осуществляются с помощью специальных белков - фер-

ментов. Описание ферментативного аппарата репликации, транс-

крипции, репарации - системы защиты и восстановления повреж-

денных участков ДНК, рекомбинации, то есть обмена участками

гомологичных хромосом и ДНК, далеко выходит за рамки нашего

изложения. Мы кратко ознакомимся только с двумя классами

ферментов ДНК - полимеразами и рестриктазами, особенно важ-

ными для понимания основ современной молекулярной диагности-

ки.

Ферменты, осуществляющие синтез ДНК, называются ДНК-по-

лимеразами. И в бактериальных клетках, и в клетках эукариот

содержатся три различные формы ДНК-полимераз, все они обла-

дают синтезирующей активностью и способны удлинять цепи ДНК

в направлении 5' - 3', последовательно наращивая по одному

нуклеотиду к 3'-OH концу, причем точность синтеза определя-

ется специфичностью спаривания оснований. Таким образом, для

работы ДНК-полимеразы необходима однонитевая матричная ДНК с

двухнитевым участком на 3'- конце молекулы. Кроме того, в

среде должны присутствовать четыре типа трифосфатов (dATP,

dCTP, dGTP и dTTP) - молекул, состоящих из основания -A,C,G

или T, сахара - дезоксирибозы (d) и трех фосфатных остатков

(P). В клетках эукариот репликацию осуществляет ДНК-полиме-

раза альфа, а в клетках E. coli - ДНК-полимераза 111.

ДНК-полимеразы обладают различными активностями, в том числе

и экзонуклеазной в направлении 3' - 5', что позволяет им

исправлять - репарировать, дефекты, допущенные при подборе

комплементарных оснований. ДНК-полимераза 1 E. coli способна

инициировать репликацию в месте разрыва ДНК и замещать гомо-

логичный участок в двойной цепи ДНК. Это свойство использу-

ется для введения в ДНК меченых нуклеотидов методом

ник-трансляции.

Открытие бактериальных ферментов, обладающих эндонукле-

азной активностью - рестрикционных эндонуклеаз или рестрик-

таз, значительно продвинуло исследование структуры ДНК и

возможности генноинженерного манипулирования с молекулами

ДНК. In vivo эти ферменты участвуют в системе распознования

и защиты "своих" и уничтожении чужеродных ДНК. Рестриктазы

узнают специфические последовательности из 4 - 6, реже 8 -

12 нуклеотидов в двухцепочечной молекуле ДНК и разрезают ее

на фрагменты в местах локализации этих последовательностей,

называемых сайтами рестрикции. Количество образующихся рест-

рикционных фрагментов ДНК определяется частотой встречаемос-

ти сайтов рестрикции, а их размер - характером распределения

этих сайтов по длине исходной молекулы ДНК. Чем чаще распо-

ложены сайты рестрикции, тем короче фрагменты ДНК после

рестрикции. В настоящее время известно более 500 различных

типов рестриктаз бактериального происхождения, причем каждый

из этих ферметов узнает свою специфическую последователь-

ность. Рестриктазы выделяют путем биохимической очистки из

различных видов бактерий и обозначают тремя буквами, соот-

ветствующими первым трем буквам латинского названия вида

бактерий, и римской цифрой, соответствующей хронологии отк-

рытия этого фермента у данного вида бактерий. В зависимости

от частоты встречаемости сайтов рестрикции в молекуле ДНК

различают три класса рестриктаз часто-, средне- и редкощепя-

щие. Естественно, что рестриктазы, узнающие длинные специфи-

ческие последовательности (8-12 п.о.), как правило, являются

редкощепящими (например Nor1), а узнающие короткие (4-5

п.о.) - частощепящими (Taq1, EcoR1).

Сайты рестрикции могут быть использованы в качестве

генетических маркеров ДНК. Действительно, образующиеся в ре-

зультатае рестрикции фрагменты ДНК могут быть упорядочены по

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.