скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Литература - Другое (книга по генетике)

p>и интронами имеются консервативные канонические последова-

тельности, играющие существенную роль в обеспечении точности

вырезания интронов во время сплайсинга РНК. Все интронные

последовательности начинаются с динуклеотида GT и заканчива-

ются динуклеотидом AG, называемыми, соответственно, донорны-

ми и акцепторными сайтами сплайсинга. На 3' конце многих

структурных генов идентифицирована поли(А)-сигнальная после-

довательность (AATAAA), участвующая в процессе модификации

первичного РНК транскрипта и ответственная за альтернативный

сплайсинг мРНК, обеспечивающий синтез разных зрелых мРНК с

одного и того же первичного РНК транскрипта.

Транскрипция генов осуществляется с помощью фермента

РНК-полимеразы. Около 50-70% клеточного синтеза РНК обеспе-

чивается РНК-полимеразой I, локализованной в ядрышках и от-

ветственной за синтез генов рибосомальной РНК. РНК-полимера-

за II обеспечивает транскрипцию генов, кодирующих собственно

структурные белки. Этот фермент локализован в ядре (но не в

ядрышках). На его долю приходится 20 - 40% синтеза РНК.

РНК-полимераза III контролирует синтез ядерных и транспорт-

ных РНК (Льюин, 1987). На 1-м этапе РНК-полимераза связыва-

ется с двухнитевым участком ДНК и, расплетая его, делает

доступным спаривание смысловой нити ДНК с рибонуклеотидами

(Рис. 2.2). После того как первый нуклеотид РНК инкорпориру-

ется в сайт инициации транскрипции, полимераза начинает

продвигаться по нити ДНК в направлении 5'- 3', расплетая

двойные нити ДНК впереди себя и заплетая их позади. Этот

процесс продолжается до достижения терминирующего сигнала,

представляющего собой один или несколько терминирующих кодо-

нов. Затем молекулы РНК и фермента высвобождаются и двойная

спираль (дуплекс) ДНК полностью восстанавливается.

Для правильного начала синтеза РНК необходимо точное

взаимодействие РНК-полимеразы с молекулой ДНК. Этот процесс

контролируется промотором - специальной регуляторной после-

довательностью ДНК размерами около 75 п.о., локализованной,

как правило, в 5'-фланкирующей области гена. Иногда под

контролем одного промотора считывается несколько генов c об-

разованием единого первичного РНК-транскрипта. Промоторные

области различных генов довольно разнообразны по своему нук-

леотидному составу. Однако, почти для всех промоторов харак-

терно наличие консервативной последовательности из 7 основа-

ний на расстоянии 19-27 нуклеотидов слева от сайта инициации

транскрипции. Это, так называемый, TATA -бокс (блок Хог-

несса), обеспечивающий корректное расположение РНК полимера-

зы по отношению к стартовому сайту. На расстоянии 70 - 80

п.о. в направлении 5'-конца от начала транскрипции часто

расположена другая консервативная последовательность из 9

п.о. - CAAT- бокс, контролирующий начальное связывание

РНК-полимеразы. Мутации в TATA- или в CAAT-боксах могут су-

щественно влиять на скорость синтеза РНК. В 5'-фланкирующей

области гена на расстоянии до тысячи пар оснований от начала

его кодирующей части располагаются другие регуляторные

последовательности, так называемые инхансеры (усилители),

способные резко увеличивать продукцию гена за счет увеличе-

ния скорости транскрипции. Эти контролирующие элементы могут

работать независимо от их ориентации по отношению к сайту

инициации. Для некоторых генов найдены участки ДНК, подавля-

ющие транскрипцию, а также так называемые аттенюаторы (осла-

бители) - последовательности, лежащие между сайтом инициации

транскрипции и собственно геном. Они могут блокировать прод-

вижение РНК-полимеразы. Благодаря такому сложному механизму

контроля, достигается очень тонкая и эффективная регуляция

экспрессии генов практически на всех этапах транскрипции,

трансляции и образования функционально зрелого белка. Эти

механизмы более детально рассмотрены в других разделах.


Раздел 2.5 Изменчивость генома, полиморфные сайты рест-

рикции, ПДРФ-анализ.


Кодирующие и регуляторные области структурных генов на-

иболее консервативны в процессе эволюции, так как мутации в

них подвержены давлению жесткого естественного отбора.

Действительно, небольшие изменения в этих последователь-

ностях, даже замена одного основания, делеция или инсерция

нескольких нуклеотидов, могут привести к прекращению синтеза

белка или к потере его функции, что, как правило, драмати-

ческим образом сказывается на жизнеспособности особей, несу-

щих подобные мутации. Однако, около 90% генома человека

состоит из некодирующих последовательностей, подобных сател-

литным ДНК, умеренным повторам, интронам и спейсерным проме-

жуткам между генами. Эти участки значительно более изменчивы

и содержат множество, так называемых нейтральных мутаций или

полиморфизмов, не имеющих фенотипического выражения и не

оказывающих заметного влияния на жизнеспособность или репро-

дуктивные свойства особей и, таким образом, не подверженных

прямому давлению естественного отбора. Полиморфные локусы

являются удобными генетическими маркерами. На основе анализа

родословных можно проследить их наследование в ряду поколе-

ний, проанализировать сцепление друг с другом, с известными

генами и с анонимными последовательностями ДНК, то есть

использовать в качестве обычных менделевских признаков в

классическом генетическом анализе. Информативность полиморф-

ных локусов определяется уровнем их генетической изменчи-

вости в различных популяциях.

Экспериментально легко выявляются два варианта геномно-

го полиморфизма. Количественые изменения в области локализа-

ции мини- и микросателлитных последовательностей ДНК и ка-

чественные замены отдельных нуклеотидов, приводящие к появ-

лению полиморфных сайтов рестрикции. В первом случае измен-

чивость по числу повторенных "коровых " единиц создает серию

аллелей, характер и частота которых уникальны для каждого

вариабильного локуса. Полиморфизм в сайтах рестрикции связан

с присутствием точковых нейтральных мутаций, локализованых,

как правило, в уникальных последовательностях некодирующих

участков ДНК. Подобные мутации в силу вырожденности генети-

ческого кода (см.Глава 1) могут возникать и в кодирующих

последовательностях генов. Спонтанные мутации, возникающие в

сайтах узнавания для определенных рестриктаз, делают их ре-

зистентными к действию этих ферментов. Аналогичным образом,

при таких заменах могут создаваться новые сайты рестрикции.

Показано, что полиморфные локусы встречаются во всех хро-

мосомах с частотой приблизительно один полиморфный сайт на

300-500 п.о. Этот тип изменчивости ДНК был выявлен и исполь-

зован для молекулярной маркировки специфических участков ге-

нома исторически раньше по сравнению с вариабильными сател-

литными повторами (Botstein et al.,1980).

Мутационная изменчивость в сайтах рестрикции может быть

легко обнаружена по изменению длины рестрикционных фрагмен-

тов ДНК, гибридизующихся со специфическими ДНК-зондами. Ана-

лиз полиморфизма длины рестрикционных фрагментов, так назы-

ваемый ПДРФ-анализ (Restriction Fragment Length Polymorphism

-RFLP analysis), включает следующие этапы: выделение геном-

ной ДНК, ее рестрикцию специфической эндонуклеазой, элекро-

форетическое разделение образующихся фрагментов ДНК и иден-

тификацию фрагментов ДНК, содержащих полиморфный сайт рест-

рикции, путем блот-гибридизации по Саузерну (см.Главу 1).

При отсутствии рестрикции в полиморфном сайте на электрофо-

реграммах или радиоавтографах (в зависимости от типа мечения

ДНК-зонда) будет выявляться один крупный фрагмент, соот-

ветствующий по длине последовательности ДНК между двумя

соседними константными сайтами рестрикции для той же эндо-

нуклеазы. При наличии рестрикции в полиморфном локусе на

электрофореграмме будет присутствовать меньший по размерам

фрагмент, равный расстоянию между полиморфным сайтом рест-

рикции и одним из ближайших константных сайтов рестрикции. С

каким именно из двух фрагментов, прилегающих к полиморфному

локусу, будет происходить гибридизация зависит от локализа-

ции используемого для анализа ДНК-зонда. В частном случае

возможна гибридизация одновременно с двумя соседними рест-

рикционными фрагментами, если выбранный ДНК-зонд комплемен-

тарен последовательности, содержащей полиморфный сайт рест-

рикци. Однако, такие зонды очень редко используются на прак-

тике, так как длина рестрикционных фрагментов обычно в

десятки раз больше длины ДНК-зондов и далеко не всегда уда-

ется выделить и проклонировать фрагмент ДНК, содержащий по-

лиморфный сайт рестрикции. Поэтому в дальнейшем для простоты

изложения мы будем рассматривать только более общую ситуацию

и считать, что при отсутствии рестрикции в полиморфном сайте

ДНК-зонд гибридизуется с одним длинным фрагментом, а при на-

личии рестрикции гибридизующийся фрагмент имеет меньшую дли-

ну. Таким образом, при анализе ДНК особей, в обеих хромосо-

мах которых присутствует сайт рестрикции в полиморфной об-

ласти, на электрофореграмме будет выявлен только один бэнд в

нижней области геля, соответствующий более короткому фраг-

менту ДНК. У особей, гомозиготных по мутации, изменяющей по-

лиморфный сайт рестрикции, будет наблюдаться один бэнд в

верхней части геля, соответствующий фрагменту большей длины,

тогда как у гетерозигот проявятся оба эти бэнда (Рис. 2.3а).

ПДРФ-анализ может быть значительно упрощен в том случае,

если возможна специфическая амплификация участка ДНК, содер-

жащего полиморфный сайт рестрикции. Тестирование состояния

этого локуса возможно путем проведения ПЦР и рестрикции амп-

лифицированного фрагмента. При отсутствии сайта узнавания в

исследуемой области ДНК размеры амплифицированного фрагмента

не изменятся после его обработки соответствующей эндонуклеа-

зой, тогда как при полном соответствии полиморфной области

сайту рестрикции образуются два фрагмента меньшей длины

(Рис.2.3б). У гетерозигот будут присутствовать 3 фрагмента,

один из которых по длине будет соответствовать размеру амп-

лификата до рестрикции, плюс 2 маленьких фрагмента с той же

суммарной длиной. Таким образом, как и в случае использова-

ния для анализа блот гибридизации по Саузерну, трем возмож-

ным вариантам генотипа будут соответствовать три различных

варианта электрофореграмм.

Необходимо подчеркнуть, что первичная идентификация по-

лиморфных сайтов рестрикции, сцепленных с определенными ге-

нами, возможна только при наличии соответствующих ДНК-зон-

дов. Дальнейшая тактика заключается в поиске рестрикционной

нуклеазы, выявляющей полиморфизм. С этой целью используют

широкий набор эндонуклеаз для рестрикции геномной ДНК, выде-

ленной из группы неродственных индивидуумов, представляющих

собой репрезентативную выборку популяции. Затем проводят

ПДРФ-анализ отдельно для каждой из рестриктаз с набором име-

ющихся ДНК-зондов. После обнаружения полиморфизма в одной из

популяций аналогичные исследования проводят в других популя-

циях.

Следует учитывать, что полиморфные сайты рестрикции

всегда представляют собой двухаллельную систему, поэтому да-

же при самой высокой вариабильности такого сайта, число ге-

терозиготных по данному локусу особей в популяции не будет

превышать 50% Между тем, только при наличии полиморфного

сайта в гетерозиготном состоянии можно отличить мутантный

аллель от нормального, то есть осуществить его молекулярную

маркировку. Следовательно, информационная емкость такого по-

лиморфизма относительно невелика ( см. Главы Y и VII).


Раздел 2.6 Вариабильные микро- и минисателлитные ДНК.


Гипервариабильные сателлитные повторы являются гораздо

более информтивными маркерами по сравнению с полиморфными

сайтами рестрикции, так как представляют собой мультиаллель-

ные системы с уровнем гетерозиготности, достигающим 70 -

90%. Кроме того, оказалось, что количество высокоизменчивых

микрои минисателлитных последовательностей в геноме челове-

ка, по-видимому, превышает несколько десятков тысяч, они

достаточно плотно и равномерно расположены в каждой из хро-

мосом. Так более 90% из 5000 идентифицированных (C-A)-повто-

ров являются полиморфными, причем в большинстве из них уро-

вень гетерозиготности значительно превышает 50% (Weissenbach

et al, 1992). Среди гипервариабильных мини-сателлитных

последовательностей различают варьирующие по числу тандемные

повторы - VNTR, три-, тетра- и пентануклеотидные повторы, а

также некоторые другие классы повторов. Общее число высоко-

полиморфных минисателлитных последовательностей в геноме

превышает 1500 (Armour et al., 1990; Charlesworth et al.,

1994). VNTR (variable number tandem repeats - варьирующие по

числу тандемные повторы) -характеризуются наличием 10 - 15 -

ти нуклеотидных "коровых" последовательностей, сходных с

контролирующими элементами рекомбинации E.coli (Jeffreys et

al., 1985). С помощью ДНК-зондов, сконструированных на осно-

ве тандемно повторяющихся "коровых" последовательностей,

можно анализировать индивидуальную изменчивость в единичных

или множественных высокополиморфных локусах, несущих одно-

типную коровую последовательность. Примером может служить

VNTR, обнаруженная в интроне миоглобинового гена, включающая

четыре тандемных повтора из 33 п.о., фланкированных прямыми

повторами из 9 п.о. Полученные из этого района ДНК-зонды с

успехом используются для идентификации личности методом

ДНК-фингерпринта, так как вероятность совпадения аллелей у

двух неродственных индивидуумов по всем гипервариабильным

локусам, гибридизующихися с этим ДНК-зондом, значительно

меньше 10!-7 (Jeffreys et al.,1991). Высокополиморфные VNTR

найдены также в гене инсулина, в области глобинового псевдо-

гена и в Х-хромосоме, содержащей последовательности, гомоло-

гичные ДНК вируса гепатита В (Nakamura et al., 1985). В

последнее время многочисленные VNTR- последовательности об-

наружены в хромосомах 1, 2q, 14, 16, 17, 19 (O'Brien,1992).

Поиск новых гипервариабильных локусов основан на системати-

ческом скрининге клонированных последовательностей ДНК с по-

мощью искусственно синтезированных "коровых" зондов. Особен-

но удобны для такого скрининга геномные библиотеки,

сконструированные на основе предварительно фракционированных

по величине Mbo1 или Sau3A1 фрагментов ДНК, так как большие

фрагменты обогащены длинными и более вариабильными минисате-

литными последовательностями (Armour, et al., 1990). Хорошие

результаты были получены также при скринировании космидных

библиотек с помощью G-богатых синтетических ДНК-зондов и

использование хемолюминесцентного метода в сочетании с ПЦР

(Decorte, Cassiman, 1990). В некоторых случаях с этой целью

применяют также последовательности ДНК, выделенные из фага

М13, имеющего в своем составе сходные структуры (Armour

etal., 1990).

Одним из вариантов минисателлитных последовательностей

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.