скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Литература - Другое (книга по генетике)

p>болезни Гоше (1993). В отношении многих других заболеваний

медицинские протоколы клинических испытаний находятся в ста-

дии утверждения (см. раздел 9.5.). К 1993г. только в США к

клиническим испытаниям генно-инженерных конструкций на чело-

веке было допущено 53 проекта (Culver, 1994). К 1995г. в ми-

ре число таких проектов возросло до 100 и более 400 пациен-

тов было непосредственно вовлечено в эти исследования (Hodg-

son, 1995). Подавляющее большинство таких проектов (86) ка-

салось лечения онкологических заболеваний, а также спида.

Таким образом, от опытов на животных и теоретических

построений 80-х годов уже в 1990 году удалось приступить к

реальному лечению моногенных заболеваний, число которых

стремительно нарастает. Естественно, что подобные революци-

онные перемены могли возникнуть только в результате решающих

успехов молекулярной биологии в картировании генов, мутации

которых приводят к наследственным заболеваниям (см.Главу

III), выяснении молекулярной природы этих мутаций (см.Главу

IV), успехов в секвенировании и клонировании генов (см.Главы

I и II), создании генно-инженерных конструкций (см.Главу

II), отработки и совершенствования методов их доставки

(см.ниже). Следует также подчеркнуть, что качественный ска-

чок в области генной терапии, когда сам ген стал рассматри-

ваться как лекарственный препарат, стал возможен благодаря

тому, что предшествующие экспериментальные и клинические

исследования доказали безопасность генной терапии.

Вместе с тем, и в сегодняшних исследованиях по генной

терапии необходимо учитывать, что последствия манипулирова-

ния генами или рекомбинантными ДНК in vivo изучены недоста-

точно. Следует помнить, что введение в организм человека

последовательностей ДНК, не находящихся под контролем свойс-

твенных им регуляторных элементов, может приводить к трудно

предсказуемым измененим метаболических процессов и сопровож-

даться функциональным дисбалансом. Современные представления

о структуре генома и его взаимодействиях с экзогенными ДНК и

вирусными последовательностями, часто используемыми в ка-

честве векторов для переноса генов (см. 9.2), могут оказать-

ся недостаточными для прогнозирования возможных нежелатель-

ных или неконтролируемых последствий такого вмешательства.

Поэтому при разработке программ генной терапии принципиаль-

ное значение имеют вопросы безопасности предлагаемых схем

лечения как для самого пациента, так и для популяции в целом

(Anderson, 1992; Miller, 1992). Важно, чтобы при проведении

испытаний ожидаемый лечебный эффект или возможность получе-

ния дополнительной полезной информации превосходили потенци-

альный риск предлагаемой процедуры. Неслучайно, в странах с

наиболее продвинутым уровнем исследований в этой области,

особенно в США, медицинские протоколы с использованием смыс-

ловых последовательностей ДНК подвергаются обязательной экс-

пертизе в соответствующих комитетах и комиссиях. Клинические

испытания предложенной генотерапевтической процедуры возмож-

ны только после ее одобрения соответствующим законодательно

утвержденным органом. В США таковыми являются: Консультатив-

ный Комитет по Рекомбинантным ДНК (Recombinant DNA Advisory

Committee - RAC), Комитет по лекарствам и пищевым продуктам

(Food and Drug Administration -FDA), с последующим обяза-

тельным утверждением проекта директором Национального Инсти-

тута Здоровья (National Institute of Health) (Miller, 1992;

Anderson, 1992; Culver, 1994). В Европе такие протоколы сос-

тавляются и утверждаются в соответствии с рекомендациями Ев-

ропейской Рабочей Группы по Переносу Генов и Генной Терапии

(European Working Group on Human Gene Transfer and Therapy)

(Cohen-Haguenauer, 1995). Программы генной терапии для кли-

нических испытаний должны включать следующие разделы: обос-

нование выбора нозологии для проведения курса генной тера-

пии; определение типа клеток, подлежащих генетической моди-

фикации; схему конструирования экзогенной ДНК; обоснование

биологической безопасности вводимой генной конструкции,

включающая опыты на культурах клеток и на модельных (транс-

генных) животных; разработку процедуры ее переноса в клетки

пациента; методы анализа экспрессии введенных генов; оценку

клинического (терапевтического) эффекта; возможные побочные

последствия и способы их предупреждения (Culver, 1993; Co-

hen-Haguenauer, 1995).

Важнейшим элементом в программе генной терапии является

анализ последствий проводимых процедур. Этот контроль прово-

дят на всех этапах терапии, причем исследования выполняют на

различных уровнях. Прежде всего, после переноса гена осу-

ществляют поиск модифицированных клеток в организме пациента

и следят за динамикой этих клеток в определенных тканях.

Этот поиск может быть облегчен при наличии маркерного гена в

конструкции. Присутствие последовательностей экзогенной ДНК

в модифицированных клетках чаще всего идентифицируют с по-

мощью ПЦР. На следующем этапе производят анализ экспрессии

введенных генов путем идентификации и количественной оценки

соответствующего РНК-транскрипта, либо белкового продукта

гена. В тех случаях, когда это возможно, проводят анализ

коррекции первичного биохимического дефекта. Затем, все по-

лученные данные сопоставляют с результатами комплексного ме-

дицинского обследования и вносят необходимые исправления и

добавления в проводимую схему лечения.


Раздел 9.2. Типы генотерапевтических вмешательств, вы-

бор клеток-мишеней.


Рассмотрим наиболее общие принципы, лежащие в основе

построения программ генной терапии. Итак, генная терапия

предполагает введение последовательностей ДНК в клетки-мише-

ни. Она проводится либо с целью коррекции наследственной па-

тологии, возникшей вследствие генетического дефекта, либо

для придания этим клеткам новых функций, способствующих уст-

ранению патологических процессов. В первом случае, в орга-

низм больного вводят нормально работающий гомолог дефектного

гена. Второй подход применяют при лечении, таких заболева-

ний, как опухоли или инфекции. В этих случаях вводят гены,

обладающие условным цитотоксическим эффектом или способству-

ющие формированию выраженного иммунного ответа. Мишенями для

таких генов служат пораженные ткани, иммунные клетки, специ-

фическим образом проникающие в эти ткани, либо предваритель-

но трансформированные in vitro другие клетки. Таким образом,

в зависимости от характера заболевания и предполагаемого ге-

нотерапевтического подхода объектом генетической трансфекции

могут служить самые разные соматические клетки, как несущие

дефектный ген, так и нормальные клетки, приобретающие тера-

певтические свойства после трансфекции. В зависимости от

способа введения экзогенных ДНК в геном пациента генная те-

рапия может проводиться либо в культуре клеток (ex vivo),

либо непосредственно в организме (in vivo). Клеточная генная

терапия или терапия ex vivo предполагает выделение и культи-

вирование специфических типов клеток пациента, введение в

них чужеродных генов, отбор трансфецированных клеток и реин-

фузию их тому же пациенту (Рис. 9.1). В настоящее время

большинство допущенных к клиническим испытаниям программ

генной терапии использует именно этот подход (Cul-

ver, 1994). Осуществление таких программ возможно лишь в

крупных специализированных центрах, требует больших матери-

альных затрат и высоких биотехнологий.

Генная терапия in vivo основана на прямом введении кло-

нированных и определенным образом упакованных последователь-

ностей ДНК в специфические ткани больного. При этом вводимые

ДНК, как правило, интегрируют с молекулами, обеспечивающими

их адресную доставку в клетки-мишени (см. 9.3). Этот очень

перспективный подход, расчитанный на массовое лечение широко

распространенных заболеваний, пока реально апробирован толь-

ко для лечения муковисцидоза (Crystal et al., 1994). Особен-

но перспективным для лечения генных болезней in vivo предс-

таляется введение генов с помощью аэрозольных или иньецируе-

мых вакцин. Аэрозольная генотерапия разрабатывается, как

правило, для лечения пульмонологических заболеваний, таких

как муковисцидоз, энфизема, рак легких, при которых обьекта-

ми генетической модификации являются специфические типы ле-

гочных клеток (Hoffman, 1991). Иньецируемые вакцины могут

использоваться для модификации различных типов клеток и со

временем, по-видимому, станут наиболее распространенным и

универсальным способом доставки чужеродного генетического

материала в любые ткани.

Эффективность курса генной терапии в значительной сте-

пени зависит от правильного выбора типов соматических кле-

ток, в которых должна бать проведена генетическая модифика-

ция. Так например, при лечении какого-либо наследственного

заболевания, обусловленного дефектом секреторного белка, ге-

нетической коррекции, в принципе, могут быть подвергнуты лю-

бые клетки, тогда как для нерастворимых или мембран-связан-

ных белков выбор ограничен теми клетками, где экспрессирует-

ся соответствующий ген (см.раздел 8.5). Разработке программы

генной терапии предшествуют тщательный анализ тканеспецифи-

ческой экспрессии соответствующего гена, идентификация пер-

вичного биохимического дефекта, исследование структуры,

функции и внутриклеточного распределения его белкового про-

дукта, а также биохимический анализ патологического процес-

са. Все эти данные учитываются при составлении соответствую-

щего медицинского протокола. Кроме того, план генотерапевти-

ческих вмешательств определяется также доступностью кле-

ток-мишеней, периодом их жизни и характером миграции в орга-

низме, эффективностью и специфичностью трансфекции кле-

ток, длительностью экспрессии введенного гена.

Наиболее перспективной представляется возможность гене-

тической модификации не самих уже дифференцированных клеток

с наследственным дефектом, а их предшественников, то есть

долго живущих стволовых клеток. В частности, многообещающей

является трансформация тотипотентных эмбриональных стволовых

клеток, которые при создании определенных микроусловий могут

дифференцироваться, практически, в любые соматические клетки

организма (Hodgson, 1995). Следует упомянуть в этой связи

предложенный недавно эффективный метод получения стволовых

клеток гемопоэтического ряда, перспективных для генотерапии

наследственных заболеваний крови (Berardi et al., 1995).

Как правило, определение типа клеток, подлежащих гене-

тической модификации, завершается оценкой результатов пере-

носа гена в системе in vitro и проведения экспериментов на

животных моделях в тех случаях, когда это возможно. Апроба-

цию процедуры генокоррекции наследственного заболевания про-

водят на первичных культурах экспрессирующих клеток больного

либо на перевиваемых культурах, полученных после предвари-

тельной трансформации первичных культур. На этих клеточных

моделях оценивают эффективность выбранной системы переноса

экзогенной ДНК, определяют экспрессию вводимой генетической

конструкции, анализируют ее взаимодействие с геномом клет-

ки, отрабатывают способы идентификации первичного дефекта и

его коррекции на биохимическом уровне.

Однако, многие проблемы генной терапии не могут быть

решены на уровне клеток. Важное значение имеет анализ влия-

ния введенных ДНК-последовательностей на межклеточные взаи-

модействия, определяющие работу соответствующих тканей и ор-

ганов. Такие исследования могут быть проведены только in vi-

vo. Так, например, в культуре клеток можно определить коли-

чество синтезированного белка, необходимое для нормализации

биохимического дефекта, но этих данных недостаточно для от-

вета на вопрос, какое количество клеток в организме должно

быть модифицировано для восстановления нарушенной функции.

Используя культуры клеток, можно разработать биохимическую

систему адресной доставки рекомбинантных ДНК, однако, про-

верка надежности работы этой системы может быть осуществлена

только на уровне целого организма. Показатели длительности и

характера экспрессии введенного гена в культуре клеток могут

использоваться лишь в качестве ориентировочных параметров

для оценки необходимой периодичности повторения терапевти-

ческих процедур. Кроме того, многие побочные эффекты и, в

первую очередь, возможные ошибки в регуляции эспрессии чуже-

родного гена и опасность вирусной контаминации в результате

использования компетентного по репликации вектора (см.ниже),

могут быть выявлены только in vivo. Поэтому такое внимание в

программах по генной терапии уделяется экспериментам in vivo

на естественных или искусственно полученных моделях соот-

ветствующих наследственных болезней у животных (см.Главу

VIII). Успешная коррекция генетических дефектов у таких жи-

вотных и отсутствие нежелательных побочных эффектов генной

терапии является важнейшей предпосылкой для разрешения кли-

нических испытаний.


Раздел 9.3 Методы генетической трансфекции в генной те-

рапии.


Решающим условием успешной генотерапии является обеспе-

чение эффективной доставки, то есть трансфекции (в широком

смысле) или трансдукции (при использовании вирусных векто-

ров) чужеродного гена в клетки-мишени, обеспечение длитель-

ной персистенции его в этих клетках и создание условий для

полноценной работы, то есть экспрессии. Трансфекция может

проводиться с использованием (1) чистой ("голой"-naked) ДНК,

лигированной в соответствующую плазмиду, либо (2) комплекси-

рованной ДНК - плазмидная ДНК комплексированная с солями,

белками (трансферрином), органическими полимерами (DEAE -

декстраном, полилизином, липосомами или частицами золота),

либо (3) ДНК в составе вирусных частиц, предварительно ли-

шенных спсобности к репликации. Залогом длительной персис-

тенции чужеродной ДНК в клетках-реципиентах является ее

встраивание в геном, то есть в ДНК клетки-хозяина. Пребыва-

ние экзогенной ДНК в ядре в свободном состоянии (в виде, так

называемых, эписом) с неизбежностью ведет к ее элиминации

даже в неделящихся клетках и, соответственно, к транзиторной

экпрессии (обычно, в течение нескольких месяцев). Необходи-

мой предпосылкой экспрессии чужеродной ДНК является наличие

соответствующих промоторов, причем в случае наличия тканес-

пецифических промоторов можно добиться экспрессии введенного

гена только в определенных тканях и клетках (см.ниже). Ос-

новные методы доставки чужеродных генов в клетки подразделя-

ются на химические, физические и биологические. Эффектив-

ность трансфекции и интеграционная способность трансдуциро-

ванной чужеродной ДНК при различных способах трансфекции в

ДНК-клетки мишени приведены в Табл.9.1.


Таблица 9.1. Основные характеристики генетической трансфек-

ции in vitro (Culver, 1994).


--------------------T------------T-------------T------------¬

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.