скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Литература - Другое (книга по генетике)

p>тельное место локализации бинаправленного промотора для ге-

нов F8A и F8B. Оказалось, что на расстоянии примерно 500 кб

в 5-'направлении от гена F8 находятся еще 2 транскрибируемые

копии гена F8A (Lakich et al.,1993).

Во время процессинга первичного белкового продукта гена

F8C от исходного пептида из 2 351 аминокислотных остатка от-

щепляется последовательность в 335 аминокислотных остатка. В

плазме крови фактор VIII существует в виде металлозависимого

гетеродимера, состоящего из С-концевой легкой цепи (80 кД) и

N-концевой тяжелой цепи (200 кД). Половина всех больных с

гемофилией A не имеют фактора VIII, 5%- имеют нормальное ко-

личество нефункционирующего белка и в остальных случаях ак-

тивность белка сохранена, но его количество резко снижено

(McGinnis et al.,1993).

Изолированные случаи гемофилии A составляют 30%; 70% -

семейные варианты. Показано, что мутации в гене F8 возникают

в сперматогенезе в 3 - 5 раз чаще, чем в оогенезе (Rosendaal

et al., 1990; Brocker-Vriends et al., 1991). Это означает,

что в 80-86% спорадических случаев матери являются носителя-

ми мутации, возникшей в зародышевых клетках их отца. Кроме

того, около 14% матерей, не являющихся носителями мутации,

могут быть соматическими или гонадными мозаиками, так что

вероятность повторного рождения больного ребенка у них также

повышена.

Около 10% всех идентифицированных мутаций в гене F8 яв-

ляются делециями одного или нескольких смежных экзонов. При-

мерно 5% всех мутаций составляют короткие делеции и дуплика-

ции гена, остальные мутации - точковые замены (Antonarakis

et al.,1995). Почти половина миссенс мутаций идентифицирова-

на в домене A2. Показано, что 35% всех известных мутаций ло-

кализовано в CpG динуклеотидах, причем свыше 90% из них

представляют собой C-T или G-A транзиции (Cooper,

Youssoufian, 1988). Подобные мутации в кодирующих районах

встречаются в 42 раза чаще, чем это можно было бы ожидать на

основании случайного характера мутагенеза. Для подавляющего

большинства мутаций гена F8C характерно практически полное

отсутствие "горячих" точек: каждая семья высокого риска по

гемофилии А имеет свою собственную мутацию. Исключение

составляет группа обнаруженных сравнительно недавно протя-

женных инверсий интрона 22, захватывающих экзоны 1-22 и пол-

ностью блокирующих функцию гена. Такие инверсии, как оказа-

лось, присутствуют в 45% семей с тяжелой формой гемофилии А

(Lakich et a.,1993). Причиной инверсий в этой области гена

является гомологичная рекомбинация между идентичными после-

довательностями гена F8А, расположенного в интроне 22

F8C-гена, и другими копиями этого же гена,находящимися на

расстоянии 500 кб от 5'конца гена F8 (см.выше).

Помимо инверсий и точечных мутаций в гене ФVIII заре-

гистрированы несколько случаев инсерционного мутагенеза,

связанных с перемещением в геноме транспазонподобных элемен-

тов типа LINE ( см. Главу II). У двух пациентов неродствен-

ного происхождения был идентифицирован инсертированный в эк-

зоне 14 F8C-гена длинный элемент LINE-1 (L1) (Kazazian et

al.,1988). В обеих семьях это были мутации de novo. L1

последовательности представляют собой специфическое для ге-

нома человека семейство длинных, размером от 2 до 4 кб, пов-

торяющихся элементов, распределенных по всем хромосомам и

состоящее, примерно, из 100 000 копий. Было показано что оба

L1 элемента, инсертированные в F8C-ген, родственны ретрот-

ранспозону, локализованному на хромосоме 22 (Dombroski et

al., 1991). В третьей семье инсертированный в интроне 10

F8C-гена L1 элемент не был связан с болезнью. Все 3 L1 эле-

мента имели открытые рамки считывания, а соответствующие ре-

конструируемые аминокислотные последовательности были высоко

идентичны друг другу с уровнем гомологии, превышающим 98%.

Таким образом, были получены еще одни косвенные подтвержде-

ния существования ряда функциональных L1 элементов, кодирую-

щих 1 или несколько белков, необходимых для их ретротранспо-

зиции.

Прямая диагностика протяженных инверсий в гене F8 осу-

ществляется путем блот-гибридизации с ДНК зондом р482.6 c

последующей рестрикцией эндонуклеазами Bcl1, Dra1, Nco1

(Lakich et al.,1993). В остальных случаях, в силу отсутствия

мажорных мутаций в гене F8C, чаще всего используют косвенные

методы молекулярной диагностики. С помощью ПЦР анализируют

полиморфные динуклеотидные СА-повторы экзона 13, HindIII по-

лиморфизм в интроне 19; HbaI полиморфизм в интроне 22 и вне-

генный полиморфизм локуса DXS52 (St14/TaqI) (Асеев и др.,

1989; Aseev et al., 1994; Сурин и др., 1990).

Учитывая наличие функционально активной формы белка

фактора VIII в плазме крови генноинженерые подходы в терапии

этого заболевания направлены на получение в чистом виде пол-

ноценного белкового продукта (заместительная терапия), либо

на введение в организм больного соответствующей кДНК,

обеспечивающей синтез ФVIII и его поступление в кровь. Осу-

ществленное 10 лет назад выделение и клонирование кДНК этого

гена сделало реальным оба эти подхода. Имеются сообщения о

получении трансгенных животных (коз), в геном которых введен

ген фактора VIII. Они могут быть использованы как продуценты

полноценного белкового продукта. Генная терапия этого забо-

левания находится на стадии экспериментальных разработок

(см.Главу IX). Успешно осуществлена трансдукция фибробластов

человека in vitro с помощью ретровирусного вектора. Основная

проблема в данном направлении заключается в выборе эффектив-

ного промотора и подборе клеток, в которых экспрессия гена

могла быть достаточно длительной. В настоящее время найдены

невирусные промоторы, обеспечивающие эффективную и длитель-

ную экспрессию гена фактора VIII in vivo. В качестве возмож-

ных клеток-мишеней используют мышечные клетки, фибробласты,

гепатоциты и клетки эндотелия сосудов. В 1994г. методом нап-

равленного мутагенеза (см.Главу VIII) получены трансгенные

модели гемофилии А на мышах. Есть все основания считать, что

клинические испытания генокоррекции этого заболевания нач-

нутся уже в ближайшем будущем.


10.4.4 Гемофилия B.


Гемоофилия B - сцепленное с полом заболевание, вызван-

ное наследственным дефектом фактора IX - важного компонента

средней фазы внутреннего каскада свертывания крови. Белок

(фактор IX) - гликопротеин, состоит из 415 аминокислотных

остатков, объединенных в 8 доменов, синтезируется в виде мо-

лекулы-предшественника клетками печени. В плазме крови фак-

тор IX находится в виде гетеродимера, состоящего из 2-х по-

липептидных цепей - легкой (L) и тяжелой (H), ковалентно

связанных между собой одним дисульфидным мостиком. Фактор IX

циркулирует в виде неактивного зимогена до тех пор, пока не

произойдет протеолитическое высвобождение его активирующего

пептида, что позволяет ему принять конформацию активной се-

риновой протеазы. Его роль в свертывании крови связана с ак-

тивацией фактора X посредством взаимодействий с ионами каль-

ция, фосфолипидами мембраны и фактором VIII.

Ген фактора IX транскрибируется в гепатоцитах с образо-

ванием мРНК размером 1 383 п.о. Для гена F9 характерна высо-

кая частота возникновения мутаций - 4.1*10!6 за поколение.

Также как и при гемофилии A мутации значительно чаще возни-

кают в сперматогенезе, чем в оогенезе (Montandon et

al.,1992). Считается, что вероятность получения мутации от

отца в 11 раз выше, чем от матери. Это означает, что в изо-

лированном случае вероятность гетерозиготного носительства

мутации у матери составвляет более 80%. Обнаружена четкая

корреляция между возрастом отца и вероятностью получения от

него новой мутации в гене F9. Так, средний возраст отца в

момент рождения дочери - носительницы новой мутации, состав-

ляет около 42 лет (King et al.,1992).

К 1994 г идентифицировано около 400 мутаций в гене ге-

мофилии B. Подавляющее большинство из них замены нуклеоти-

дов, приводящие к заменам аминокислот или к образованию

стоп-кодонов. Характерно, практически, полное отсутствие вы-

раженных мажорных мутаций и доминирующих областей повышенной

частоты мутирования. Только одна мутация - I397T, встрети-

лась в 7 самьях. Около 42% точечных мутаций возникает в CpG

динуклеотидах (Bottema et al., 1993). Показано, что частота

G-A или C-T транзиций в CpG cайтах в 24 раза выше, чем в

других местах гена (Koeberl et al., 1990). Кроме того, в CpG

динуклеотидах гена F9 в 7.7 раз чаще возникают трансверсии

(A-T, A-C, G-T или G-C). Это обьясняется тем, что содержание

(G+C) в кодирующих областях F9-гена составляет 40% (Bottema

et al., 1991).

В 40% случаев при тяжелых, ингибиторных формах гемофи-

лии В у пациентов обнаруживаются делеции различной протяжен-

ности. Около 10% точковых мутаций локализовано в донорных или

акцепторных сайтах сплайсинга или создают новые сайты

сплайсинга внутри интронов. В одной семье разрушение гена

произошло в результате инсерции Alu-элемента в экзон 5

(Vidaud et al., 1993). Описано 13 точковых мутаций в промо-

торной области гена F9. Именно с такими мутациями связана

Лейденовская (Leyden) форма заболевания, при которой к воз-

расту половозрелости наступает улучшение многих клинических

показателей и, в частности, исчезает кровоточащий диатез.

Обьясняется это тем, что мутации в промоторной области могут

приводить к переключению конститутивной экспрессии гена на

стероид-гармон-зависимую, нарушая связывание гепатоцитарного

ядерного фактора 4 (HNF-4), принадлежащего к суперсемейству

транскрипционных факторов для рецепторов стероидных гормонов.

Гемофилия B была использована как модель для выработки

стратегии генетического консультирования при моногенных за-

болеваниях, обладающих выраженной мутационной гетероген-

ностью (Giannelli et al., 1992). Основой такой стратегии яв-

ляется составление национальных баз данных молекулярных де-

фектов и специфических методов их диагностики. В частности,

основываясь на подобной информации, авторы провели характе-

ристику мутаций в группе из 170 неродственных индивидуумов с

гемофилией B шведского и английского происхождения и только

в одном случае им не удалось идентифицировать мутацию.

Молекулярная диагностика гемофилии В проводится как

непрямыми так и прямыми методами. Непрямая диагностика осно-

вана на анализе методом ПЦР внутригенных полиморфных сайтов:

Taq1 (в положении 11 109-11 113); инсерционного полиморфизма

в интроне А (рестриктазы Hinf1 и Dde1) ; Taq1 в интроне F в

положении 72. Метод ПДРФ анализа информативен только у

60-70% всех семей с гемофилией В (Aseev et al., 1994; Сурин

и др., 1994). Прямая диагностика гемофилии В включает ампли-

фикацию геномных фрагментов гена фактора IX с последующей

детекцией ошибок комплементации методом mismatch detection

(см.Главу IV) и прямое секвенирование продуктов амплификации

(Montadont et al.1990).

Сравнительно небольшие размеры гена, присутствие белко-

вого генопродукта в сыворотке крови и наличие естественных

биологических моделей способствовали быстрому прогрессу

исследований по генотерапия гемофилии В, которая в настоящее

время уже включена в программы клинических испытаний. Успеш-

ная трансдукция и коррекция генетического дефекта получена в

опытах in vitro и in vivo на самых различных модельных

системах (Culver, 1994; Gerrard et al., 1993). Так, при вве-

дении полноразмерной кДНК в составе ретровирусного вектора в

первичные культуры кератиноцитов человека наблюдали

экспрессию F9 и секрецию биологически активного фактора IX.

После трансплантации этих трансдуцированных клеток nu/nu мы-

шам человеческий фактор IX в небольшом количестве появлялся

в кроветоке и сохранялся там в течение недели (Gerrard et

al.,1993). На собаках, страдающих гемофилией B, осуществлена

трансдукция гепатоцитов in vivo путем прямой инфузии реком-

бинантного ретровирусного вектора в портальную вену. При

этом наблюдали устойчивую экспрессию фактора IX в течение

более 5 месяцев и улучшение биохимических показателей свер-

тываемости крови (Kay et al.,1993). Имеется сообщение об

успешной коррекции гемофилии В в Китае в 1992г. Двум больным

мальчикам в кожу спины трансплантировали культуру аутологич-

ных фибробластов, предварительно трансдуцированных ex vivo

рекомбинантной кДНК гена FVIII. Несмотря на определенный

скептицизм в оценке этого достижения со стороны специа-

листов, нет сомнения в том, что успешная генотерапия гемофи-

лии В - событие самого ближайшего будущего.


10.4.5 Болезнь Виллебранда.


Болезнь Виллебранда- аутосомно-доминантное (при некото-

рых формах рецессивное) заболевание, обусловленное

наследственным дефицитом белка VIIIR, родственного фактору

VIIIС свертывания крови (см.Гемофилия А) и известного, как

фактор фон Виллебранда. Этот большой гликопротеин синтезиру-

ется клетками эндотелия, в которых специфическая YIIIR-мРНК

составляет 0.3%, и поступает в кровь в виде двух мультимеров

с молекулярными весами от 850 кД до 20 миллионов дальтон.

Фактор VIIIR осуществляет взаимодействие между стенкой сосу-

дов и тромбоцитами, регулируя их адгезию в местах поврежде-

ния эндотелия. Фактор VIIIR участвует также в регуляции син-

теза и секреции фактора YIIIC и стабилизирует комплекс фак-

тора VIII.

Различают 7 типов болезни Виллебранда - I, IIA-IIE и

III (Zimmerman, Ruggeri, 1987). При типе I снижена концент-

рация всех мультимеров в плазме, но их качество не нарушено.

Генетически эта форма заболевания подразделяется на ре-

цессивные и доминантные варианты. Типы IIC и III - рецессив-

ны. Тип II характеризуется качественными аномалиями фактора

VIIIR, выражающимися в уменьшении способности формировать

большие мультимеры, (типы IIA и IIC) или в увеличении ско-

рости их выведения из плазмы (тип IIB).

Ген F8VWF достаточно протяженный и состоит из 52 экзонов,

размерами от 40 до 1379 п.о. (Mancuso et al., 1989). Величи-

на интронов варьирует в огромных пределах (от 100 до 20 000

пар нуклеотидов). Сигнальный пептид и пропептид кодируются

первыми 17 экзонами, в то время как зрелая субьединица

VIIIR- фактора и 3'нетранслируемая область - остальными 35

экзонами. Внутри гена идентифицированы повторяющиеся после-

довательности, включая 14 Alu-элементов и полиморфный TCTA

повтор размером около 670 п.о. в интроне 40. Районы гены,

кодирующие гомологичные домены, имеют сходную структуру. На

хромосоме 22q11-q13 обнаружен псевдоген длиной 21-29 кб,

соответствующий экзонам 23-34 F8VWF-гена (Mancuso et al.,

1991). Идентифицированные в нем сплайсинговые и нонсенс му-

тации препятствуют образованию функционального транскрипта.

Наибольшее число мутаций идентифицировано при типе II

болезни Виллебранда. Подавляющее большинство из них - замены

аминокислот, чаще всего происходящие в результате транзиций

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.