скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Дослідження процесів масопереносу при фільтрації підземних вод

.

Для довільної точки N(x,y) водопроникної ділянки DE маємо

.

Таким чином, на водопроникних ділянках потенціал прийма постійне значення. Безліч точок, де потенціал задовольняє рівності (x,y)=const, називається лінією (поверхнею) рівного потенціалу або еквіпотенціальною лінією (поверхнею).

На кривої депресії п’єзометричний напір дорівнює нулю (атмосферний тиск і тиск, що відповідає висоті капілярного підняття води в рунті звичайно не враховується) і тому на ділянці BC маємо

На проміжку виточування CD , як і на кривій депресії, тиск дорівнює нулю й тому на цій ділянці маємо умову

.

На водонепроникних ділянках і на кривій депресії швидкість фільтрації спрямована уздовж цих границь. Лінії, уздовж яких рухається фільтрівна рідина, називаються лініями потоку. Інакше кажучи, лінія, дотична в кожній точці якої збігається з напрямком вектора швидкості фільтрації, називається лінією потоку. Отже, кутовий коефіцієнт дотичної в кожній точц лінії потокузбігається з кутовим коефіцієнтом вектора швидкості фільтрації й тому диференціальне рівняння ліній потоку має вигляд

.                                             (3.18)

Очевидно, на лініях потоку, а отже, також на кривій депрес й на водонепроникних ділянках, нормальна складова швидкості фільтрації в будь-якій точці цих ліній дорівнює нулю, тобто

.

Зокрема, для горизонтальної водонепроникної ділянки маємо

.

Уздовж вільної поверхні (кривій депресії) у загальному випадку, коли має місце інфільтрація або випар рідини, виконуються дві умови (з обліком капілярного pk й атмосферного pat тисків)

.

Якщо через s позначити довжину дуги депресійно кривої, а через cos(s,x) і cos(s,y) - косинуси кутів, утворених дотичній до кривої депресії відповідно з віссю абсцис і віссю ординат, то, з огляду на останню рівність, можна записати

,

де vs,vn - проекції швидкост фільтрації на кривої депресії відповідно на дотичну й нормаль до цієї кривої.

Скориставшись відомими співвідношеннями

умови для дотичній і нормальної складової швидкост фільтрації на кривій депресії можна представити у вигляді

.

Виключаючи з останніх рівностей cos(s,x), cos(s,y) одержимо умову для швидкості фільтрації на кривої депресії у вигляді

або

.                                   (3.19)

Із цієї умови слідує, що кривій депресії в площині зміни вектора швидкості фільтрації vxOvy відповіда окружність (або її частина) із центром у точці з координатами  радіусом |χ - ε|/2, причому частина зазначеного круга може проходити двічі.

Точне рішення рівняння фільтрації при певних граничних умовах можна одержати тільки в окремих випадках, причому одержання рішень й у цих випадках пов'язане з більшими математичними труднощами, перебороти які вдається як правило, тільки за допомогою методу конформних відображень.

3.3.     Зв'язок рівнянь плоскої фільтрації з теорією функцій КЗ

Щоб застосувати апарат теорії функцій комплексної змінної до рішення рівнянь у частинних похідних, що описують конкретні фізичні процеси необхідно встановити, як можна перейти від крайових задач для цих рівнянь до завдань теорії аналітичних функцій комплексної змінної. Зв'язок теорії функцій комплексної змінної із крайовими задачами теорії фільтрації підземних вод да можливість за допомогою методу конформних відображень знаходити аналітичні як точні, так і наближені вирішення для багатьох випадків, що виникають у практиц гідротехнічного, меліоративного й водогосподарчого будівництва. Метод конформних відображень можна застосовувати при розв’язанні різних крайових задач математичної фізики. Однак найбільш ефективне його застосування виявляється у випадку крайових задач для рівняння Лапласа, рішеннями якого є гармонійн функції. Вид цієї функції залежить від області, у якій шукається розв’язання, від виду крайових умов для шуканого рішення. Як відомо, гармонійні функц можна зв'язати з аналітичними, і тоді завдання про знаходження рішення рівняння Лапласа (рівняння фільтрації) буде зведена до завдання знаходження аналітично в розглянутій області (області фільтрації) функції.

Рівняння плоскої сталої фільтрації важкої нестисливої рідини в однорідному ізотропному пористому середовищі у випадку, якщо рух рідини (підземних вод) відбувається у вертикальній площині (профільна фільтрація), можуть бути записані у вигляді

                                        (3.20)

                               (3.21)

Рівність (3.20) є умовою того, що величина -vydx + vxdy є повним диференціалом деякої функції ψ(x, y) , що, як і функція (x,y), визначається з точністю до довільного доданка. Отже, відповідно до визначення повного диференціала маємо

.                          (3.22)

Звідси,

                           (3.23)

Порівнюючи (3.21) і (3.23), одержуємо

                           (3.24)

Ці рівності, як відомо, називаються умовами Коші-Рімана (Эйлера-Даламбера). Диференціюючи першу рівність по y , а другу по x, одержуємо

.                   (3.25)

Таким чином, функція ψ(x,y) так само, як функція (x,y), задовольняє рівнянню Лапласа, тобто гармонійною функцією.

Функція ψ(x, y) називається функцією потоку. Ї назва визначається фізичним змістом цієї функції, тому що диференціальне рівняння лінії току має вигляд (3.18), яких можна записати в такий спосіб:

 .                                  (3.26)

Загальний інтеграл цього рівняння є функція ψ(x,y) = C (C = const), отже, на лініях току функція ψ(x, y) зберіга постійне значення. З'ясуємо фізичний зміст функції потоку, а саме, покажемо, що функція ψ(x,y) пов'язана з поняттям фільтраційної витрати. Нехай KL - довільна крива в області фільтрації G - є напрямної циліндрично поверхні одиничної висоти з утворюючої, перпендикулярної площини xOy. Витрата рідини Q через таку поверхню дорівнює сумі фільтраційних витрат через нескінченно малі елементи кривій KL.

Завдяки нерозривності розглянутого потоку рідини елементарна витрата d через елемент кривої dl дорівнює алгебраїчній сум витрат через ділянки 1-2 й 2-3 - відрізки прямих, паралельних осям координат:

d = dQx + dQy = vdl.

Будемо вважати, що значення витрати Q(x,y) зростає при русі уздовж кривої KL у напрямку від точки 1 до точки 3 (позитивний напрямок кривої). Тоді маємо

d = dQx + sQy = vy(-dx) + vxdy d = dψ.

Інтегруючи останнє рівняння уздовж кривої від точки K до точки L, знайдемо шукану фільтраційну витрату

                         (3.27)

тобто збільшення функції потоку ∆ψ уздовж довільно кривої KL, узятої в області фільтрації G, дорівнює фільтраційній витраті через цю криву.

Якщо задати функцію потоку як функцію від довжини дуги l кривій KL, то для визначення витрати одержимо

                            (3.28)

Тому що функції (x, y) і ψ(x, y) задовольняють умовам Коші - Рімана, то комплексна функція

                           (3.29)

буде аналітичною в області фільтрації G й її можна розглядати як функцію комплексної змінної ω=f(z) , де z = x + iy . Функція (3.29) у теорії фільтрації називається комплексним потенціалом фільтрації. Таким чином, через комплексний потенціал фільтрац встановлюється зв'язок фільтрації з теорією функцій комплексної змінної.

Розглянемо ще одну комплексну величину vx - iyy , що у теорії фільтрації називається комплексною швидкістю фільтрації. Диференціюючи рівняння (3.29) по z і використовуючи співвідношення (3.20), (3.23), знайдемо похідну

.                           (3.30)

Тому що похідна аналітичної функції є також аналітичною функцією, то комплексна швидкість фільтрації w, обумовлена рівністю

,                       (3.31)

є аналітичною функцією в області фільтрації G .

Геометричне подання про плоский сталий фільтраційний потік дає так названу гідродинамічну сітку, тобто сітку, утворену сімейством ліній потоку ψ(x,y)=ψn=const і сімейством еквіпотенціальних ліній (x,y)= m=const, які одночасно є й лініями рівних напорів h = hm = const.

З умов Коші-Рімана слідує рівність

                                      (3.32)

яка показує, що еквіпотенціальні лінії й лінії потоку взаємно ортогональні.

Таким чином, якщо для досліджуваного руху підземних вод знайти комплексний потенціал фільтрації (3.29) або комплексну швидкість фільтрації (3.31), те можна легко визначити величини (x,y), ψ(x,y), vx(x,y), vy(x,y), отже й всі інші характеристики фільтраційного потоку.

3.4.     Метод конформних відображень у теорії фільтрації

Якщо геометрична форма області G складна, то відшукання рішення крайової задачі пов'язане з більшими труднощами. Тому при вирішенні тієї чи іншої крайової задачі намагаються спростити як диференціальне рівняння із граничними умовами, так і вид області, у якій відшукується вирішення. Одним з найпоширеніших методів такого спрощення крайового завдання метод перетворення незалежних змінних (заміна змінних), зокрема, метод конформного перетворення незалежних змінних.

Нехай у деякій області G необхідно знайти рішення крайової задачі для рівняння Лапласа

.                                               (3.33)

Спробуємо спростити вид області G за допомогою заміни змінних

                                    (3.34)

або

                          (3.35)

При переході до новим змінних ξ і η міняється не тільки область G, але й саме диференціальне рівняння й граничні умови. Очевидно, найбільший інтерес представляють перетворення, що не міняють вид диференціального рівняння, тобто в нашому випадку перетворення, щодо яких саме рівняння Лапласа залишається інваріантним. Покажемо, що в цьому випадку функції (3.34), що здійснюють перетворення області G у більш просту область D, належать, як і функція (x,y), до класу гармонійних функцій, більше того, вони будуть сполученими гармонійними функціями.

Знайдемо

Підставляючи знайдені вирази в рівняння (3.33), одержимо наступне диференціальне рівняння

.  (3.36)

Очевидно, для того, щоб диференціальне рівняння (3.36) було рівнянням Лапласа, необхідно, щоб перетворення (3.34) задовольняло таким вимогам:

              (3.37)

                             (3.38)

.                       (3.39)

Рівняння (3.37) показують, що функції  і  є гармонійними функціями. Розділивши рівняння (3.38) на , маємо

                                   (3.40)

Підставляючи вираз (3.40) у рівняння (3.39), одержуємо

,                                        (3.41)

звідки маємо, що якщо

                                         (3.42)

то = ±1 й, отже, з рівнянь (3.40) одержимо або

                                        (3.43)

або

                                              (3.44)

Ці рівняння є умовами Коші-Рімана й показують, що функції  і  є гармонійними функціями. Перетворення, здійснюване такими функціями, переводить нескінченно малі фігури площини хОу в подібні їм фігури площини  за умови, що виконується (3.42). Саме такі перетворення й називаються конформними. Отже, якщо перетворення, здійснюване функціями (3.34), є конформним, то рівняння (3.33) прийме вид

або

З останньої рівності одержуємо

                                      (3.45)

Отримане рівняння також є рівнянням Лапласа, де частки похідні виражаються через нові незалежні змінні ξ і η - координати області D .

Тепер, якщо утворити комплексну функцію, у якої дійсною й уявною частинами є відповідно функції ξ(x,y) і η(x,y), то така комплексна функція ζ=ξ+iη буде аналітичною функцією комплексної змінної z = x+iy, тобто

ζ(z)=ξ(x,y)+iη(x,y) = f(z).                (3.46)

Як ми вже відзначали, перетворення, здійснюване аналітичною функцією (3.47), або, що те ж саме, функціями (3.34), називається конформним усюди в області G , де похідна не дорівнює нулю, тобто де виконується умова

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.