скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Дослідження процесів масопереносу при фільтрації підземних вод

Для моделювання динаміки неконсервативної речовини до рівнянь (1.28)-(1.31) необхідно додати початкові й граничні умови, потім відшукати аналітичне, числено-аналітичне або чисельне рішення відповідної крайово задачі. Зокрема, крайова задача для моделювання динаміки БПК (органіки, що окисляєлегко) і РК (розчиненого кисню) при плоско-вертикальній фільтрац підземних вод записується в такому виді:

 (1.37)

 (1.38)

             (1.39)

              (1.40)

             (1.41)

              (1.42)

            (1.43)

           (1.44)

1.1.2. Моделювання конвективно дифузії розчинених речовин при профільній фільтрації

Процес масопереносу розчинних у підземних водах речовин описується системою диференціальних рівнянь у частинних похідних другого порядку зі змінними коефіцієнтами, яка у випадку двовимірно плоско-вертикальної (профільної) сталої фільтрації підземних вод за умови сталості коефіцієнта конвективної дифузії має такий вигляд:

          (1.45)

          (1.46)

                 (1.47)

де D - коефіцієнт конвективної дифузії в м/сут, c й N - концентрація речовин, що дифундують, у г/л або кг/м відповідно в рідкій і твердій фазах; vx(x, y, t) і vy(x, y, t) - координати вектора швидкості фільтрації в м/сут; σ - пористість або активна пористість ґрунту, у якому відбувається рух вод і конвективная дифузія розчинної речовини; α - постійна масообміну (швидкост сорбції); c0 - початкова концентрація речовини в рідкій фазі; β - коефіцієнт розподілу речовини між рідкою й твердою фазами в умовах рівноваги за законом лінійної ізотерми Генрі, що виражається рівністю cp = βN, причому через cp позначена рівноважна концентрація розчину, по величині рівна кількості речовини, що поглинає твердою фазою;  - потенціал швидкост фільтрації; χ - коефіцієнт фільтрації в м/сут;  - напір в м; p-тиск у
Н(м2 =кг/м·c2 ); ρ - щільність у кг/м3; g - прискорення сили ваги в м/с2.

Розглянемо конвективну дифузію тих розчинних речовин, як нейтральні до наявних у ґрунті породам, тобто надалі сорбцією й іншими видами поглинання забруднюючі підземні води компонентів знехтуємо й будемо виходити з наступної системи рівнянь фільтрації й конвективної дифузії (гідравлічно дисперсії):

          (1.48)

           (1.49)

При конвективній дифузії речовин, що забруднюють підземн води, на вході АВ фільтраційного потоку можна прийняти одне з наступних граничних умов:

а) задана концентрація розчиненого у водоймі (ріці) речовини

             (1.50)

б) задана умова Данквертса, що враховує як конвективний, так дифузійний механізми відводу речовини на водопроникній ділянці границ області фільтрації

                  (1.51)

де n - нормаль до границі; vn - нормальна складова швидкості фільтрації.

На водонепроникних ділянках границі області фільтрації й на криві депресії виконується умова

                    (1.52)

На ділянці виходу фільтраційного потоку (CD) можна приймати одне з наступних граничних умов:

а)задана концентрація речовини, що дифундує, або задана умова Данквертса (такі умови приймаються, якщо не спостерігається інтенсивного відводу вод на виході фільтраційного потоку)

      (1.53)

б) задана умова, що враховує тільки конвективний перенос через границю (у випадку інтенсивного відводу вод на виході фільтраційного потоку)

                     (1.54)

При конвективній дифузії солей і гіпсів, що залягають на певній глибині T фільтраційного потоку, на границі із сіллю або гіпсом звичайно приймається умова

               (1.55)

де  - концентрація повного насичення солі або гіпсу.

Початкові умови засолення підземних вод, мають вигляд

                      (1.56)

де c0 - задана концентрація речовини, що дифундує, в області фільтрації в момент часу до настання процесу забруднення (засолення) або промивання підземного середовища.

Трудність, що виникає при рішенні стаціонарних нестаціонарних крайових завдань, що описують двовимірні процеси, зв'язана не тільки з видом рівнянь у частинних похідних і з видом граничних умов, а головним чином з видом (геометрією) області, у якій відшукується рішення. У зв'язку із цим у рівняннях конвективної дифузії й у наведених вище граничних умовах доцільно перейти до нових незалежних змінних координат комплексного потенціалу ω, що, як відомо, має вигляд багатокутника зі сторонами, паралельними прямокутній системі координат.

Нехай відома характеристична функція течії

       (1.57)

яку можна знайти, наприклад, методом конформних відображень. Тоді, зробивши в рівнянні конвективної дифузії (1.49) заміну змінних  й  одержимо наступне рівняння.

Взявши середню величину , що входить у праву частину рівняння (1.49) по області наведеного комплексного потенціалу , і заміняючи її деякою середньою величиною , розглянемо два типи нестаціонарних крайових завдань.

Перший тип крайових завдань виникає при фільтрац забруднених вод у відкриті водойми (водоймища), коли в останні підтримується задана концентрація речовин. Ці задачі формулюються в такий спосіб: потрібно знайти рішення  рівняння

              (1.58)

задовольняючій або граничній умовам виду (перша задача)

        (1.59)

або умовам, що враховують механізм дифузійного відводу речовини від границі на вході фільтраційної течії (друга задача):

           (1.60)

і початковій умові

                 (1.61)

Безпосередньою перевіркою легко переконатися, що рішенням двовимірних крайових завдань (1.58), (1.59), (1.61) і (1.58), (1.60), (1.61) будуть функції  й , що є рішеннями відповідних одномірних крайових завдань:

          (1.62)

        (1.63)

          (1.64)

                                                                (1.65)

Підставляючи це рішення у вигляді суми рішень стаціонарного й нестаціонарного завдань і застосовуючи метод поділу змінних, одержимо рішення нестаціонарних завдань конвективної дифузії, які після розподілу на c1 введення безрозмірних величин  і  запишуться в наступному вигляді.

      (1.66)

      (1.67)

де власні значення  й  визначаються рівняннями

              (1.68)

           (1.69)

Коефіцієнти  й  обчислюються за формулами

    (1.70)

  (1.71)

Другий тип крайових задач конвективної дифузії підземно води, речовин що забруднять, характеризується гарничною умовою, що приймається на виході фільтраційного потоку, коли спостерігається інтенсивний відвід із дренажного каналу CD. У цьому випадку рішенням стаціонарних задач буде стала, значення якої залежить від крайової умови на вході фільтраційного потоку.

Тому перейдемо до розгляду нестаціонарних завдань. Осереднюючи швидкість фільтрації по просторовим змінним, приходимо до наступних двох крайових завдань: Потрібно знайти рішення рівняння

          (1.72)

задовольняючим крайовим умовам:

         (1.73)

а у випадку обліку механізму дифузійного відводу речовини на вході фільтраційного потоку (друга крайова задача) потрібно знайти вирішення  рівняння

          (1.74)

задовольняючим крайовим умовам:

  (1.75)

Застосування методу Фур'є до крайової задачі(1.72)-(1.73) да вирішення

     (1.76)

де , функція  визначається рівностями

        (1.77)

       (1.78)

Коефіцієнти  обчислюються по наступній формулі:

.              (1.79)

Рішення крайової задачі (1.74)-(1.75) одержуємо в наступному виді:

    (1.80)

де коефіцієнти  обчислюються по формулі

              (1.81)

а власні значення λn визначаються з рівняння

λn =                (1.82)

Замість власних значень λn можна шукати значення v = λ + µ2 з рівняння

             (1.83)

Таким чином, отримані аналітичні рішення всіх основних крайових завдань конвективної дифузії, забруднюючих воду, речовин за умови осереднення швидкості фільтрації по просторових координатах.

1.1.3. Моделювання масопереносу у випадку D=D( ) при наявності масообміну

Вихідні рівняння. Процес масопереносу розчинних речовин (солей, гіпсів й ін.) при фільтрації підземних вод можна описати наступною системою диференціальних рівнянь у частинних похідних:

                    (1.84)

               (1.85)

                      (1.86)

де  - вектор швидкості фільтрації;  - потенціал швидкості фільтрації; χ - коефіцієнт фільтрації;  - дифузійний потік або вектор масової швидкості розчиненої речовини (вектор кількост речовини, що переноситься через одиницю площадки за одиницю часу);  і  - концентрац речовини відповідно в рідкій і твердій фазах;  - коефіцієнт конвективної дифузії (Dm - коефіцієнт молекулярної дифузії), σ - активна (або ефективна) пористість середовища;  - оператор Гамільтона, α - постійна швидкості масообміну; β - коефіцієнт розподілу речовини між фазами в умовах рівноваги при лінійній ізотермі Генрі

                       (1.87)

де Γ - коефіцієнт Генрі.

У багатьох практичних задачах як рівняння кінетики масообміну береться одне з наступних рівнянь.

1) при кристалізації або розчиненні компонентів породи у фільтрівній воді

                          (1.88)

де  - коефіцієнт насичення:

2) при нерівномірній необоротній сорбції або десорбц відповідно

                              (1.89)

3) при рівноважній сорбції або десорбції відповідно

        (1.90)

   (1.91)

де  (або ) - так звана ефективна пористість або масооб’єм поглинання (виділення) речовини породою.

Надалі як рівняння кінетики беремо рівняння (1.88), що є в математичному відношенні найбільш загальним з наведених вище. Тому у випадку плоско-вертикальної сталої фільтрації система рівнянь масопереносу запишеться у вигляді

                    (1.92)

    (1.93)

Припустимо, що вирішено фільтраційне завдання й визначений комплексний потенціал фільтрації  як деяка аналітична функція . Тоді область комплексного потенціалу  буде конформно відображатися на область фільтрації z функцією

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.