скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Теория экономического прогнозирования

•   техническое проектирование соответствует случаю, когда проблема технически решена, доказана возможность изготовления изделия на имеющемся оборудовании;

•   перспективная разработка отражает этап, когда доказана принци­пиальная возможность создания изделия и изготавливается опытный обра­зец;

•   поисковая разработка - соответствует этапу, когда проводятся работы для доказательства возможности технического решения проблемы и удовлетворения условиям эксплуатации, проверяются в лабораторных ус­ловиях возможные конструктивные решения;

•   теоретические исследования являются начальным этапом разра­ботки.

Рис. 2.9. Этапы разработки

Условные обозначения:

3-1 - производственная готовность; 1-2 - техническое проектирование; 2-3 -перспективная разработка; 3-4 - поисковая разработка; 4-5 - теоретические исследования.

Определение состояния, возможных сроков реализации разработок, а также необходимых затрат производится экспертами. Эти данные используются, прежде всего, для исключения из рассмотрения тех задач, которые близки к завершению, т.е. находящихся на стадии технического проекти­рования или производственной готовности.

Материалы экспертных оценок служат для построения характери­стики изменения денежных затрат по этапам цикла разработки (рис. 2.9.).

Общая площадь под рассматриваемой кривой соответствует суммар­ным расходам и может быть разделена на две части: завершенную часть (без штриховки) и часть, подлежащую разработке (заштрихованная пло­щадка). Отношение предстоящих затрат к суммарным расходам представ­ляет собой коэффициент состояния разработки.

При разработке подсистем (задач), входящих в «дерево целей», при­нимаются во внимание возможности частичного использования результа­тов разработок одних подсистем для других, характеризуемые коэффици­ентами взаимной полезности. Эти коэффициенты экспертно оцениваются специалистами и выражают относительное снижение затрат времени и других ресурсов.

Принципы, заложенные в систему ПАТТЕРН, позволяют осущест­вить прогноз и провести анализ в любой области деятельности. Рассматри­ваемая система позволяет: выбрать объект прогноза; выявить внутренние закономерности его развития; написать сценарий; сформулировать задачи и главную цель прогноза; провести анализ иерархии и декомпозицию це­лей; понять внутреннюю и внешнюю структуры объекта прогнозирования; провести анкетирование экспертов; выполнить математическую обработку данных анкетирования; количественно оценить структуры; верифициро­вать результаты; разработать алгоритм распределения ресурсов; провести распределение ресурсов; оценить распределение ресурсов.

Сравнение методов прогнозного графа и метода ПАТТЕРН показы­вает, что основное преимущество последнего состоит в наличии механизма реализации прогноза.

Метод ПАТТЕРН можно назвать комбинацией методов прогнозиро­вания и стратегического планирования.

3. ПРОВЕРКА АДЕКВАТНОСТИ И СРЕДСТВА ВЕРИФИКАЦИИ ПРОГНОЗНЫХ МОДЕЛЕЙ

Для обеспечения точности и достоверности результатов прогнозиро­вания необходима проверка адекватности или верификация прогнозной модели.

Проверка адекватности модели выполняется с использованием формальных статистических критериев. Однако такая проверка возможна при наличии надежных статистических параметров как оригинала (объекта прогнозирования), так и модели. Если по каким-то причинам такие оценки отсутствуют, то осуществляют сравнение отдельных свойств оригинала и модели. При этом первоначально должна проверяться истинность реали­зуемых функций, затем истинность структуры и, наконец, истинность дос­тигаемых при этом значений параметров. Для этого помимо модели необ­ходимо иметь функционирующий оригинал, то есть проводить сопровож­дающее моделирование.

Таблица 3.1. Методы верификации прогнозных моделей

Метод верификации Технология верификаци
Прямая верифика­ция Разработка модели того же объекта с использованием иного ме­тода прогнозирования
Косвенная верифи­кация Сопоставление результатов, полученных с использованием дан­ной модели, с данными, полученными из других источников
Консеквентная ве­рификация Верификация результатов моделирования путем аналитического или логического выведения прогноза из ранее полученных прогнозов
Верификация оппо­нентом Верификация путем опровержения критических замечаний оп­понента по прогнозу
Верификация экс­пертом Сравнение результатов прогноза с мнением эксперта
Инверсная верифи­кация Проверка адекватности прогнозной модели и объекта в ретро­спективном периоде
Частичная целевая верификация Построение условных подмоделей, эквивалентных полной мо­дели, в типовых для проектируемой системы ситуациях
Структурная вери­фикация Сопоставление структур без экспериментальной проверки со­поставления в целом

Верификация модели - оценка ее функциональной полноты, точно­сти и достоверности с использованием всей доступной информации в тех случаях, когда проверка адекватности по тем или иным причинам невоз­можна.

В прогнозировании чаще используют верификацию, так как в боль­шинстве случаев реальный объект отсутствует или разрабатываются новые (еще не существующие) функции объекта прогнозирования. В таблице 3.1 представлены наиболее часто используемые методы верификации.

В прогнозировании случай совершенного прогноза достигается крайне редко, поэтому проблема верификации прогнозной модели является одной из важнейших в прогностике. Степень совершенства прогнозов вы­ражают через различные измерители точности прогнозирования. Точность точечного прогноза в момент f, определяется разностью между прогнозом Р, и фактическим значением Fh прогнозируемого показателя в этот момент времени. Отдельный точечный прогноз не определяет точность конкрет­ной процедуры прогнозирования в целом, то есть потребуется некоторая выборка {(Pj, fj)}, на основе которой рассчитывается значение некоторого измерителя точности прогнозирования.

Важность проблемы точности прогнозирования определяет важность анализа различных ее измерителей. В настоящее время нет достаточно полного исследования всевозможных критериев точности, что затрудняет оценивание возможностей различных моделей и опыта их применения в прикладных работах по прогнозированию конкретных процессов [10].

Для измерения точности прогнозирования можно использовать лю­бой коэффициент парной корреляции между последовательностями про­гнозных и фактических значений. Классический критерий точности про­гнозирования - коэффициент корреляции Пирсона.

Максимальное значение r = 1 достигается при наличии линейной связи



               (3.1)


между Р и F, т.е. когда существуют такие а0 и а/>0, что Р = oq + at F.

Однако при а0 £ 0 и а, = 1 прогноз не будет совершенным, хотя кор­реляция полная и положительная; только при Р = F коэффициент корреля­ции может характеризовать совершенный прогноз.

Коэффициент ранговой корреляции Спирмэна также может быть ис­пользован в качестве измерителя точности прогнозирования. Для этого вычисляются ранги {x} и {у} элементов соответствующих последователь­ностей {PJ и {Ft}. Очевидно, что

                                                   (3.2)     

Если несколько элементов из Pi или Ft имеют одинаковые ранги, то им определяется ранг, равный среднему арифметическому значений мест элементов в данной ранжировке. В этом случае последнее соотношение останется верным. Вычисляются корректирующие множители для связей соответственно для последовательностей xi и уi :

                                                 (3.3)

где г,- и /, равно числу повторений i-го ранга в соответствующих по­следовательностях. Вычисляют сумму квадратов разностей рангов

                                                                       (3.4)

Если Tf или Ту равно нулю, то коэффициент ранговой корреляции Спирмэна равен:

                                                                                      (3.5)

Коэффициент ранговой корреляции р позволяет характеризовать ка­чественную сторону последовательности прогнозов {Р/j, а именно способ­ность предсказывать точки поворота. Коэффициент ранговой корреляции можно рассматривать как дополнительный измеритель точности прогнози­рования при Pi=Fi и г, близким к 1, так как критерий р инвариантен отно­сительно линейной вариации, причем р=1 прогноз может быть далеко не совершенным, так как для этого достаточно лишь совпадения рангов.

В качестве измерителей точности прогнозирования могут быть ис­пользованы и другие коэффициенты парной корреляции, например коэф­фициент ранговой корреляции Кендэлла. Однако для характеристики ко­эффициентов парной корреляции как некоторого класса измерителей точ­ности прогнозирования достаточно провести анализ этих двух наиболее часто используемых коэффициентов, чтобы выделить общие для этого класса свойства. Во-первых, инвариантность относительно линейной ва­риации, а во-вторых, полная корреляция еще fie определяют совершенный прогноз. Еще одним важным свойством коэффициентов парной корреля­ции является возможность проверки их на значимость, так как определены соответствующие законы распределения этих статистик. Например, для коэффициента ранговой корреляции Спирмэна значимость проверяется с п-2 степенями свободы по следующей t-статистике:


                                                                                  (3.6)        


Наиболее распространенными оценками точности прогнозирования также являются средняя ошибка аппроксимации

                                                            (3.7)

и средняя квадратическая ошибка прогнозов

                                                                     (3.8)

Точность прогнозирования тем выше, чем меньше значения е или S соответственно. Совершенный прогноз достигается при e=S=0.

Одним из исследователей проблем экономического прогнозирова­ния, Г. Тейлом [10], предложен в качестве меры качества прогнозов коэф­фициент расхождения V (или коэффициент несоответствия), числителем которого является среднеквадратическая ошибка прогноза, а знаменатель равен квадратному корню из среднего квадрата реализации:



(3.9)


Если У=0, то прогноз абсолютно точен (случай «идеального» прогнозирования). Если F=l, то это означает, что прогноз близок к простой (и наивной) экстраполяции. Если У>1, то прогноз дает худший результат, чем предположение о неизменности тенденций исследуемого явления.

Коэффициент расхождения может быть использован при сопостав­лении качества прогнозов, получаемых на основе различных методов и моделей. В этом его несомненное достоинство. Величина V поддается разложению на составляющие (частные коэффициенты расхождения), харак­теризующие влияние ряда факторов (это достигается разложением числи­теля, представляющего собой средний квадрат ошибки прогноза).

В некоторых случаях более важное значение имеют распознающие способности моделей прогнозирования, особенно при краткосрочном про­гнозировании. Например, при прогнозировании выполнения месячных планов предприятий отрасли по особо учитываемой номенклатуре в начале месяца в первую очередь интерес представляет более точная оценка воз­можности выполнения плана, чем прогнозная информация о величине от­клонения от плана. В данном случае целесообразно использовать следую­щую меру точности прогнозирования:

                                                          (3.10)

где q - число подтвержденных прогнозов; р - число неподтвержденных прогнозов.

Если £~\, то имеет место случай «идеального» прогнозирования.

Таким образом, измерители точности прогнозирования по отноше­нию к инвариантности относительно линейной вариации делятся на инва­риантные и не инвариантные. Инвариантные измерители (S и коэффициен­ты парной корреляции), хотя и не позволяют сравнивать точность прогно­зирования различных процессов, могут использоваться для определения точности прогнозирования различных последовательностей прогнозных значений {Pi} при фиксированной последовательности {Ft}. Например, по­добная ситуация возникает при моделировании, когда необходимо выби­рать между несколькими моделями прогнозирования, генерирующими со­ответствующие последовательности {Ft}. Инвариантные измерители могут быть проверены на статистическую значимость, то есть с определенной доверительной вероятностью конкретное значение измерителя является обоснованным. Однако особый интерес при построении моделей прогно­зирования имеет критерий Г. Тейла, так как позволяет определить, в чем состоит расхождение: имеет место дрейф среднего или дрейф дисперсии. С другой стороны, критерий У не является инвариантным, и есть возмож­ность оценивать применимость модели для совокупности различных про­гнозируемых процессов в целом. Например, для прогнозирования по одной модели поведения отдельных предприятий или отрасли в целом.

Средняя ошибка аппроксимации е является наиболее наглядным из­мерителем точности прогнозирования, что вместе с неинвариантностью приводит к тому, что требование к точности задач прогнозирования фор­мулируется по этому критерию.

Определить точность точечного прогноза по данным формулам можно при ретроспективности прогнозирования, когда апробируется мо­дель, а также для прогнозов с малым периодом упреждения {краткосроч­ные прогнозы).

Точность и надежность прогнозов - широко распространенные в прогностической литературе термины, смысл которых, как это представля­ется на первый взгляд, вполне очевиден. Однако содержание этих терми­нов часто толкуется достаточно субъективно. Нередки случаи, когда одно понятие подменяется другим ввиду отсутствия строгого определения дан­ных категорий [39].

О точности прогноза принято судить по величине погрешности (ошибки) прогноза - разности между прогнозируемым и фактическим зна­чением (реализацией) исследуемой переменной. Однако такой подход к оценке точности возможен только в двух случаях. Во-первых, когда пери­од упреждения уже окончился и исследователь имеет фактические значе­ния переменной. При краткосрочном прогнозировании это вполне реально. Во-вторых, когда прогноз разрабатывается ретроспективно, то есть про­гнозирование осуществляется для некоторого момента времени в про­шлом, для которого уже имеются фактические данные. Так поступают в тех случаях, когда проверяется разработанная методика прогноза.

При этом имеющаяся информация делится на две части. Одна из них, охватывающая более ранние данные, служит для оценивания пара­метров прогностической модели, а более поздние данные рассматриваются как реализации соответствующих прогностических оценок. Полученные ретроспективно ошибки прогноза в какой-то мере характеризуют точность примененной методики прогнозирования и могут оказаться полезными при сопоставлении нескольких методов. В то же время величину ошибки рет­роспективного прогноза нельзя рассматривать как окончательное доказа­тельство пригодности или, наоборот, непригодности применяемого метода прогнозирования. К ней следует относиться с известной осторожностью и при ее применении в качестве меры точности необходимо учитывать, что она получена при использовании лишь части имеющихся данных. Однако эта мера точности обладает большей наглядностью и уж во всяком случае, более надежна, чем погрешность прогноза, исчисленная для периода, ха­рактеристики которого уже были использованы при оценивании парамет­ров модели. В последнем случае погрешности, как правило, будут незна­чительны и мало зависимы от теоретической обоснованности примененной для прогнозирования модели. Точность же прогнозов будет преувеличен­ной и в известном смысле иллюзорной.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.