скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Алгебра октав

Действительно,

(ww1, ww1) = (( ww1)() + (ww1)()) = (( ww1)(1) + (ww1)(1)) = (ww1)(1) = w(w11)  = | w1 |2* w11 = | w |2 * | w1 |2 = (a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2) * () = (w, w)(w1, w1).

Итак, все условия скалярного произведения при

(w, w1) = (w1+w1)

для октав w и w1 выполнены.

Лемма 2. В любой нормированной линейной алгебре имеет место тождество:

(a1b1,a2b2) + (a1b2, a2b1) = 2(а1, a2)(b1, b2). (1)


Подставим в основное тождество () данной нормированной линейной алгебры вместо х сумму a1 + а2, а вместо у - элемент b. Тогда:

((a1 + а2)b, (а1 + a2)b) = (a1 + а2, а1 + а2)(b, b)

(a1b + a2b, a1b + a2b) = (a1+a2, a1+a2)(b, b)

(a1b + a2b, a1b) + (a1b + a2b, a2b) =

(а1, a1)(b, b) + (a2, a2)(b, b) + 2(a1, a2)(b, b)

(a1b, a1b) + (a2b, a2b) + 2(а1b, a2b) =

(a1, a1)(b, b) + (a2, a2)(b, b)+2(a1, a2)(b, b).         (2)

Но в силу условия ():

(a1b, a1b) = (a1, a1)(b, b); (a2b, a2b) = (a2, a2)(b, b).

Тогда из (2) следует

(a1b,a2b) = (a1, a2)(b, b). (3)

Заменим в (3) b на сумму b1 + b2:

(a1(b1 + b2), a2(b1 + b2)) = (a1, a2)(b1 + b2, b1 + b2)

(a1b1+a1b2, a2b1+a2b2) = (a1, а2)((b1, b1)+(b2, b2)+2(b1, b2))

(a1b1, a2b1) + (a1b1, a2b2) + (a1b2, a2b1) + (a1b2, a2b2) =

(a1, a2)(b1, b1) + (a1, a2)(b2, b2) + 2(a1, a2)(b1, b2). (4)

Но в силу (З):

(a1b1, a2b1) = (a1, a2)(b1, b1); (a1b2, a2b2) = (a1, a2)(b2, b2).


Тогда из (4) следует

(a1b1, a2b2) + (a1b2, a2b1) = 2(a1, a2)(b1, b2),

что и требовалось доказать.

Лемма 3. В нормированной линейной алгебре  с единицей имеет место равенство

(аb) = (b, b)а. (5)

Докажем это равенство для случая b 1 . По следствию из леммы 1 тогда для любого х  А имеет место х = k1 + b, откуда при х = b следует k = 0. В этом случае

 = - b.

Рассмотрим элемент с = (ab)  - а, где  = (b, b).

В силу свойств скалярного произведения имеем:

(с, с) = ((аb) - а, (аb) - а) =((аb) , (ab) ) + 2(a, а)- 2((ab) , а). (6)

Упростим первое слагаемое в правой части равенства (6):

((аb) , (ab) ) = (ab, аb)( , ) = (а, а)(b, b)( , ) = (a, а)(b, b)2 = 2(а, а).

Для упрощения третьего слагаемого в правой части равенства (6) воспользуемся тождеством (1), записав его в виде:


(а1b1, а2Ь2) = 2(а1, a2)(b1, b2) - (a1b2, a2b1).

Положив a1 = ab, b1 = , a2 = a, b2 = 1, получим:

((аb) , a) = 2(ab, а)( , 1) - (ab, а). (7)

Так как

b1, то (, 1) = (-b, 1) = -(b, 1) = 0.

Далее:

-(ab, а) = -(ab, а(-b)) = (ab, ab) = (a, a)(b, b) = (а, а).

Тогда:

((аb) , а) = (а, а).

Отсюда в равенстве (6) получаем:

(с, с) = 2(а, а) + 2(а, а) - 22(а, а) = 0.

Так как (с, с) = 0, то с = 0, или (ab)  - а = 0, откуда

(аb)  = а = (b, b)a.

Если b не ортогонален 1, то b = k1 + b/, где b/  1. Тогда


 = k1 - b/ и (аb)  = (а(k1+ b/))(k1- b/) = k2а - (ab/)b/ = k2а + (аb/)/.

Так как по доказанному выше:

(аb/)/.= (/,/)а, то (аb)  = k2a + (b/, b/)a = [k2 + (b', b')]a = (b, b)a,

так как

(b, b) = (k1+ b/, k1+ b/) = k2(1, l) + (b', b')+2k(b', l) = k2 + (b', b')

в силу того, что (1, 1) = 1 и (b/ , 1) = 0, так как b/  1.

Следствие 1. В нормированной линейной алгебре  с единипей имеет место равенство

(ах)+(ау)  = 2(х,у)а. (8)

Подставим в тождество (5) вместо b сумму х + y. Тогда

(а(х + у))() = (х + у, х + у)а (а(х + у))(  +) = ((х, х) + (у, у) + 2(х, у))а  (ах)  + (ау) + (ах) + (ау) = (х, х)а+(у, у)а + 2(х, у)а.

В силу тождества (5):

(ax)= (х, х)а, (ау) = (у, у)а.

Тогда:

(ах)  + (ау)  = 2(х, у)а,


что и требовалось доказать.

Следствие 2. Нормированная линейная алгебра  с единицей является альтернативной линейной алгеброй.

Если в равенстве (5) (ab)  = (b, b)a положить а = 1, то получается b = (b, b)l = (b, b). Тогда (ab)  = a(b), откуда следует, что (ab)b = a(bb).

Аналогично можно доказать, что b(ba) = (bb)a.

Отсюда следует, что алгебра  является альтернативной линейной алгеброй.

п. п. 6.2 Теорема Гурвица

Пусть  - линейная алгебра с единицей. Согласно Лемме 1 каждый элемент а А однозначно представляется в виде

а = k1+ а', где k  R и а'  1.

В алгебре  введем операпию сопряжения: элемент, сопряженный элементу а, есть элемент ā = k1- а' Если а = kl, то а' = 0 и ā = k1, т.е. ā = а. Если же а  1, то ā = - а.

Имеют место:

а) ā = а;

б) () = = = (k+l)1-(a/ + b/) = (k1 – a/)(l1 – b/).

Пусть - подалгебра алгебры ,содержащая 1 и не совпадающая с  .Выберем в В базис 1, i1, i2, … in, такой, что i1  1, i2 1, … in  1. Тогда любой элемент b  B имеет вид: b = bо + b1i1 + b2i2 + … + bnin , а сопряженный ему элемент b = b0 - b1i1 - b2i2 - … - bnin, откуда и  В.

Пусть е - единичный элемент, ортогональный В, т.е. для любого b В имеет место e b.

Рассмотрим множество В + Be = b1, b2  В. Покажем, что есть снова подалгебра алгебры .

Лемма 4. Подпространства  и ортогональны друг другу, т.е. для любых u1, u2  B имеет место u1u2e.

Для доказательства этого факта в тождестве (1) положим вместо

а1 = u1, b1 = u2, a2 = e, b2 = 1.

Тогда

(u1u2, e) + (u1, eu2) = 2(u1, e)(u2, 1).

Так как u1, u2  В, то u1u2  В, а тогда u1u2  e, u1  e.

Значит,

(u1, u2e) = 0, (u1, e) = 0.

Тогда:

(u1, u2e) = 0, т.е. u1  u2e.

Теорема 1.

Представление любого элемента из В + Be в виде u1+ u2e, где u1, u2  В, единственно.

Пусть

u1 + u2e = u1/ + u2/e  u1 - u1/ = (u2/ - u2)e,


откуда следует, что v=u1 - u1/ принадлежит одновременно двум ортогональным подпространствам В и Be. Тогда (v, v) = 0, откуда v = 0. Следовательно, u1 - u1/ = 0 и (u2/ - u2)e = 0. Из второго равенства либо u2/ - u2 = 0, либо е = 0. Но е ≠ 0, следовательно, u2/ - u2= 0. Тогда u1 = u1/ и u2 = u2', т.е. представление элемента из В + Be в виде u1 + u2e единственно.

Лемма 5. Для любых u, v  А имеет место

(ue)v = (u)e. (9)

Воспользуемся тождеством (8) из следствия к лемме 3, положив в нем а = u, х = е, у = . Тогда:

(ue)v + (u)= 2(е, )u.

Так как  е, то

(е, ) = 0 и (ue)v + (u)= 0.

Но  = -е, так как е 1, тогда:

(ue)v + (u)(- е) = 0  (ue)v = (u)e.

Лемма 6. Для любых u, v  A имеет место

u(ve) = (vu)e. (10)

Если в том же равенстве (8) положить а = 1, х = u, у = ve, то получаем:

(1*u)ve + 1*()ū = 2(u, ) * 1  u(ve) + ()ū = 2(u, ).


Так как u  ve, то u  ,  = -ve, в силу того, что из ve  В следует ve  1. Следовательно,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.