скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Алгебра октав

<                  ><С другой стороны,

w(w11) = w|w1|2.

Сравнивая правые части этих равенств, получаем:

(ww1) 1 = w(w11).


Покажем также, что в алгебре октав имеет место равенство:

1(w1w) = (1w1)w).

Действительно,

1(w1w) = (ū1 - v1e)((u1+ v1e)(u+ve)) = (ū1 - v1e) ((u1u -v1 )+(vu1+ v1ū)e) = (ū1(u1u--v1 ) – ()(-v1))+((vu1+ v1ū)ū1 - v1())e = (ū1(u1u-v1 ) + (ū1+ u)v1) + ((vu1+ v1ū)ū1 - v1(ū ū1 - v))e= (ū1u1u- ū1v1 + ū1v1+ uv1) + (vu1 ū1+ v1ūū1 - v1ūū1 - v1v)e =(|u1|2u + u|v1|2)+(v|u1|2 + |v1|2v)e = (|u1|2+ |v1|2)u + (|u1|2 + |v1|2)ve = (|u1|2+ |v1|2)( u+ ve) = |w1|2w..

С другой стороны,

(1w1)w = |w1|2w.

Сравнивая правые части этих равенств, получаем:

1(w1w) = (1w1)w.

Рассмотрим уравнение wх = w1, где

w = и + ve = a+bi+cj+dk+ Ae+BI+CJ+DK,

w1 =a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K.

- известные октавы, а х - неизвестная октава. Умножим слева это уравнение на , w ≠ 0. Тогда:


 (wх) = w1 (w)х = w1 |w|2 х = w1  х = w1 .

В этом случае октава х называется левой частной от деленияоктавы w1ww на октаву w.

Аналогично, решением уравнения yw = w1 является

yy y = w1,

называемый правым частным от деления октавы w1ww на октаву w.

Найдем квадратный корень из октавы

ww w = a + bi + cj + dk + Ae + BI + CJ + DK.

Значение квадратного корня из этой октавы будем искать как октаву

θ= x + yi + zj + tk +Xe + YI + ZJ + TK ,

где x, y, z, t, X, Y, Z, T R, удовлетворяющий условию θ 2 = w. Следовательно,

(x + yi + zj + tk +Xe + YI + ZJ + TK)( x + yi + zj + tk +Xe + YI + ZJ + TK) = a + bi + cj + dk + Ae + BI + CJ + DK  x2 – y2 – z2 – t2 -X2 – Y2 – Z2 – T2+ 2xyi + 2xzj + 2xtk + 2xXe + 2 xYI +2xzj + 2xtk = = a + bi + cj + dk + Ae + BI + CJ + DK  

Если x ≠ 0, тo из первого уравнения системы следует, что

4х4 - 4ах2 – (b2 + c2 + d2 + A2 + B2 + C2 + D2) = 0

x2=  (a± ) = (a± |w|).

Так как х2 ≥ 0, то х2 = (a± |w|), откуда x=± .Определив х, значения y, z, t, X, Y, Z, T находим из равенств

y = , z = , t = , X = , Y = , Z = , T = .

Из рассмотрения свойств кватернионов и октав можно заметить, что у этих числовых систем много общего. Алгебраические формы записи элементов этих числовых систем представляют собой некоторые многочлены от действительного числа и мнимых единиц с действительными коэффициентами. Одинаковым образом вводится понятие элемента сопряженного данному элементу. Свойства сопряженных элементов одни и те же, в некоторых случаях лишь с поправкой на число мнимых единиц. Понятие модуля кватерниона и октавы вводится одинаковым образом и обладает одинаковыми свойствами. То, что квадрат чисто мнимого кватерниона или октавы есть неположительное действительное число, дает для них возможность записи в виде а + t, где а  R и t2 ≤ 0. Формула извлечения корня квадратного как из кватерниона, так и из октавы одна и та же, опять-таки с учетом количества мнимых единиц. При внимательном подходе к аксиоматическому определлллению этих числовых систем так же можно заметить общий подход к построению моделей этих числовых систем. Это так называемый метод удвоения, который заключается в том, что при введении нового числового множества мы строим декартов квадрат предыдущего чисссслового множества и новые числа рассматриваем как упорядоченные пары из чисел предыдущего числового множества. Так, удвоением множества действительных чисел получили множество комплексных чисел, удвоением множества комплексных-чисел - множество кватернионов, удвоением множества кватернионов - множество октав, причем операции сложения и умножения в построенных моделях определялись совершенно одинаково. Такими же свойствами обладает и множество комплексных чисел, однако, в силу того, что их. свойства хорошо изучены на младших курсах, здесь ограничились лишь аксиоматическим построением этой числовой системы.

Теорема Фробениуса, которую мы рассмотрели в , поле комплексных чисел и тело кватернионов анализирует с общей точки зрения, как частные случаи ассоциативной линейной алгебры с делением и содержащей единицу. В дальнейшим мы попытаемся установить общий подход к таким числовым системам, как поле комплексных чисел, тело кватернионов и алгебра октав.

4.2 Алгебраическое сопряжение

Определение. Алгебраическим сопряжением называется сопряжение, которое в сочетании с операцией умножения позволяет в любой алгебре получать действительное число. Как видим, различий относительно сопряжения по мнимой единице два - во-первых, отсутствует требование использования операции сложения и во-вторых в сочетании с произведением требуется получение числа именно алгебры действительных чисел, а не одной из предшествующих удвоению.

.

Или, алгебраическое сопряжение используется для определения модуля числа алгебры.

Для того, чтобы получить действительное число в случае произвольной гиперкомплексной алгебры, следует придумать процедуру, с помощью которой можно отбросить все мнимые единицы. Наиболее простой операцией сопряжения, при этом похожей на определенное выше сопряжение, является операция смены знаков сразу у всех мнимых единиц числа, безотносительно способа их получения и их свойств:

.

Сменив знаки при всех мнимых единицах, получим:

.

Естественно, что столь вольное обращение с мнимыми единицами не может гарантировать, что является действительным числом. Но при этом отметим, что сумма как раз является действительным числом. Таким образом, нам нужно отображение, которое произведению в одной области сопоставляет сложение в другой и наоборот. Такой операцией является пара отображений - логарифмирование и потенцирование. Еще раз напомним их свойства:


,

,

в случае, если a и b коммутируют по умножению.

Таким образом, для получения числа, алгебраически сопряженного заданному, нужно найти его логарифм, сменить знаки у всех мнимых единиц и потенцировать.

Любое число любой гиперкомплексной алгебры естественным образом коммутирует как само с собой, так и с действительным числом, поэтому

.

Или, если

, то .

Среди свойств алгебраического сопряжения отметим весьма важные:

- сопряженное произведения равно обратному произведению сопряженных:

,

,

- в некоторых алгебрах алгебраическое сопряжение совпадает по результату с сопряжением по действительных чисел, все виды сопряжения в ней совпадают. Сопряжение по мнимой единице:

.


a) Алгебраическое сопряжение:

;

,

то есть смена знаков мнимых единиц после логарифмирования эквивалентна смене знака у мнимой единицы самого числа:

.

Здесь одинаково обозначены сопряжение по мнимой единице и алгебраическое. Полагаю, пока нет совмещения сопряжений в одной формуле, разночтений возникнуть не должно.

б) кватернионы.

Кватернионы имеют строение:

и получены некоммутативным удвоением алгебры комплексных чисел:

.

Мнимая единица удвоения j не коммутирует с единицей i, поэтому сопряжение по ней требует сопряжения также и по i и по k:

.

Алгебраическое сопряжение в кватернионах, также как в комплексных числах, просто меняет знак у компонент при мнимых единицах:


.

То есть в кватернионах сопряжение по мнимой единице и алгебраическое сопряжение так же совпадают.


§5 .Некоторые тождества для октав

Приведем основные тождества, применимые к октавам. Тождества базируются на понятии ассоциатора, коммутатора и йорданова произведения.

()=- ассоциатор;

- коммутатор;

- йорданово произведение.

Линеаризуя тождества, несложно получить, что

& .

Таким образом, ассоциатор есть кососимметрическая функция от x, y, z. В частности:.

.

Алгебры, удовлетворяющие этому условию, называются эластичными. Таким образом, алгебра октав эластична. Покажем на основе эластичности тождество:

,

.

В силу того, что  для октав всегда есть действительное число, а в силу эластичности,  получаем:


.

Таким образом, для эластичной алгебры справедливо:

.

Функция Клейнфелд:

.

Лемма1. - кососимметрическая, для любой пары равных аргументов

.

В силу правой альтернативности

.

Во всякой алгебре справедливо тождество:

.

Достаточно раскрыть все ассоциаторы. Обозначив левую часть этого равенства через , получим:


Поменяв местами: получим: .

Используя , получим, что при любых одинаковых аргументах. Из этого следуют тождества:

1) ;

2) ;

3) ;

4) .

Тождества Муфанг.

Правое тождество Муфанг: ;

Левое тождество Муфанг: ;

Центральное тождество Муфанг: .

Вопросы о строении простых алгебр в том или ином многообразии являются одними из главных вопросов теории колец. Мы уже знаем один пример простой неассоциативной альтернативной алгебры - это алгебра Кэли-Диксона. Оказывается, что других простых неассоциативных альтернативных алгебр не существует. Этот результат доказывался с нарастанием общности на протяжении нескольких десятков лет разными авторами: вначале для конечномерных алгебр (Цорн, Шафер), затем для алгебр с нетривиальным идемпотентом (Алберт), для альтернативных тел (Брак, Клейнфелд, Скорнаков), для коммутативных альтернативных алгебр (Жевлаков) и т. д. Наибольшее продвижение было получено Клейнфелдом, доказавшим, что всякая простая альтернативная неассоциативная алгебра, не являющаяся ниль-алгеброй характеристики 3, есть алгебра Кэли-Диксона. Окончательное описание простых альтернативных алгебр осуществилось после появления теоремы Ширшова о локальной нильпонентности альтернативных ниль-алгебр с тождественными соотношениями.


§6. Теорема Гурвица

6.1 Нормированные линейные алгебры

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.