скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Отрывок из учебника по теории систем и системному анализу

Структурное моделирование системного анализа базирует­ся на некоторых специфических особенностях структур опреде­ленного вида, которые используются как средство исследования систем или служат для разработки на их основе специфических подходов к моделированию с применением других методов фор­мализованного представления систем (теоретико-множественных, лингвистических, кибернетических и т.п.). Развитием структур­ного моделирования является объектно-ориентированное моде­лирование.

Структурное моделирование системного анализа включает:

•   методы сетевого моделирования;

•   сочетание методов структуризации с лингвистическими;

•   структурный подход в направлении формализации постро­
ения и исследования структур разного типа (иерархических, мат­
ричных, произвольных графов) на основе теоретико-множествен­
ных представлений и понятия номинальной шкалы теории изме­
рений.



При этом термин «структура модели» может применяться как к функциям, так и к элементам системы. Соответствующие струк­туры называются функциональными и морфологическими. Объектно-ориентированное моделирование объединяет структу­ры обоих типов в иерархию классов, включающих как элементы, так и функции.

В структурном моделировании за последнее десятилетие сфор­мировалась новая технология CASE. Аббревиатура CASE имеет двоякое толкование, соответствующее двум направлениям ис­пользования CASE-систем. Первое из них - Computer-Aided Software Engineering - переводится как автоматизированное про­ектирование программного обеспечения. Соответствующие CASE-системы часто называют инструментальными средами быстрой разработки программного обеспечения (RAD - Rapid Application Development). Второе - Computer-Aided System Engineering - подчеркивает направленность на поддержку кон­цептуального моделирования сложных систем, преимуществен­но слабоструктурированных. Такие CASE-системы часто назы­вают системами BPR (Business Process Reengineering). В целом CASE-технология представляет собой совокупность методологий анализа, проектирования, разработки и сопровождения сложных автоматизированных систем, поддерживаемую комплексом вза­имосвязанных средств автоматизации. CASE - это инструмента­рий для системных аналитиков, разработчиков и программистов, позволяющий автоматизировать процесс проектирования и раз­работки сложных систем, в том числе и программного обеспе­чения.

Ситуационное моделирование опирается на модельную тео­рию мышления, в рамках которой можно описать основные ме­ханизмы регулирования процессов принятия решений. В центре модельной теории мышления лежит представление о формиро­вании в структурах мозга информационной модели объекта и внешнего мира. Эта информация воспринимается человеком на базе уже имеющихся у него знаний и опыта. Целесообразное по­ведение человека строится путем формирования целевой ситуа­ции и мысленного преобразования исходной ситуации в целевую. Основой построения модели является описание объекта в виде совокупности элементов, связанных между собой определенны­ми отношениями, отображающими семантику предметной обла-

4*


Мм не приводили 1 одробиых поясняющих примеров, поскольку каждый сту­дент можсг легко обнаружить большинство из названных особенностей на при icpe споею свешенного повеления или поведения своих друтсй, коллектива, в котором учшся.

*

В то же время при создании и организации управления пред­приятиями часто стремятся отобразить их, используя теорию авто­матического регулирования и управления, разрабатывавшуюся для закрытых, технических систем и существенно искажающую пони­мание систем с активными элементами, что способно нанести вред предприятию, сделать его неживым "механизмом", не способным адаптироваться к среде и разрабатывать варианты своего развития. Такая ситуация стала наблюдаться в нашей стране в 60-70-е годы, когда слишком жесткие директивы стали сдерживать развитие промышленности, и в поисках выхода руководство страны начало реформы управления, названные по имени их инициатора косыгин-скими (подробнее см. в гл. 4).

Для того, чтобы начать осознавать проявление рассмотренных особенностей в реальных производственных ситуациях, студентам рекомендуется ознакомиться с примерами задач управления в [1.14, 8 и др.].

Рассмотренные особенности противоречивы. Они в большинст­ве случаев являются и положительными и отрицательными, жела­тельными и нежелательными для создаваемой системы. Их не сразу можно понять и объяснить для того, чтобы выбрать и создать тре­буемую степень их проявления. Исследованием причин проявления подобных особенностей сложных объектов с активными элемента-; ми занимаются философы, психологи, специалисты по теории си­стем. Основные изученные к настоящему времени закономерности построения, функционирования и развития систем, объясняющие эти особенности, будут рассмотрены в следующем параграфе.1

Проявление противоречивых особенностей развивающихся си­стем и объясняющих их закономерностей в реальных объектах не­обходимо изучать, постоянно контролировать, отражать в моделях-и  искать  методы   и средства, позволяющие регулировать степень их проявления.

При этом следует иметь в виду важное отличие развивающихся систем с активными элементами от закрытых: пытаясь понять прин­ципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что начиная с некоторого уровня слож--ности, систему легче изготовить и ввести в действие, преобразовать-и изменить, чем отобразить формальной моделью.

По мере накопления опыта исследования и преобразования та-; ких систем это наблюдение подтверждалось и была осознана их

'   После ознакомления с закономерностями студентам рекомендуется составить таблицу особенностей и закономерностей, их объясняющих.

52


основная особенность - принципиальная ограниченность формализо­ванного описания развивающихся, самоорганизующихся систем.

Эта особенность, т. е. необходимость сочетания формальных метол">в и методов качественного анализа и положена в ©снову <как < удет показано ниже) большинства моделей и методик систем­ного i нализа.

П{ и «'юрмированин таких моделей меняется привычное предста-илени- о моделях, характерное для математического моделирования и при он дной математики. Изменяется представление и о доказа-тельст ?е адекватности таких моделей.

Ос но шую конструктивную идею моделирования при отображе­нии оЬъетга классом самоорганизующихся систем можно сформу­лировать следующим образом: разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент компо­ненты и связи, а затем, путем преобразования полученного отобра­жения   с   помощью   установленных   (принятых)   правил   (правил структуризации или декомпозиции; правил композиции, поиска мер близости на пространстве состояний), получают новые, неизвестные ранее компоненты, взаимоотношения, зависимости, которые могут либо послужить основой для принятия решений, либо подсказать последующие шаги на пути подготовки решения.

Таким образом можно накапливать информацию об объекте, фиксируя при этом все новые компоненты и связи (правила взаимо­действия компонент), и, применяя их, получать отображения после­довательных состояний развивающейся системы, постепенно созда­вая все более адекватную модель реального, изучаемого или созда­ваемого объекта. При этом информация может поступагь от спе­циалистов различных областей знаний и накапливаться во времени по мере ее возникновения (в процессе познания объекта).

Адекватность модели также доказывается как бы последовате­льно (по мере ее формирования) путем оценки правильности отра­жения в каждой последующей модели компонентов и связей, необ­ходимых для достижения поставленных целей.

Иными словами, такое моделирование становится как бы свое­образным "механизмом" развития системы. Практическая реализа­ция такого "механизма" связана с необходимостью разработки язы­ка моделирования процесса принятия решения. В основу такого языка (знаковой системы) может быть положен один^ из методов моделирования систем (например, теоретико-множественные пред­ставления, математическая логика, математическая лингвистика, имитационное динамическое моделирование, информационный подход и т. д.), но по мере развития модели методы могут ме­няться (как в примерах морфологического и структурно-лингвисти­ческого моделирования в главах 7, 8).

53


52


Основы системного анализа


53


 


 


сти. Модель объекта имеет многоуровневую структуру и пред­ставляет собой тот информационный контекст, на фоне которо­го протекают процессы управления. Чем богаче информацион­ная модель объекта и выше возможности манипулирования ею, тем лучше и многообразнее качество принимаемых решений при управлении.

При реальном моделировании используется возможность ис­следования характеристик либо на реальном объекте целиком, либо на его части. Такие исследования проводятся как на объек­тах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т.д.). Реальное моделирование яв­ляется наиболее адекватным, но его возможности ограничены.

Натурным моделированием называют проведение исследова­ния на реальном объекте с последующей обработкой результа­тов эксперимента на основе теории подобия. Натурное модели­рование подразделяется на научный эксперимент, комплексные испытания и производственный эксперимент. Научный экспери­мент характеризуется широким использованием средств автома­тизации, применением весьма разнообразных средств обработки информации, возможностью вмешательства человека в процесс проведения эксперимента. Одна из разновидностей эксперимен­та - комплексные испытания, в процессе которых вследствие по­вторения испытаний объектов в целом (или больших частей си­стемы) выявляются общие закономерности о характеристиках качества, надежности этих объектов. В этом случае моделиро­вание осуществляется путем обработки и обобщения сведений о группе однородных явлений. Наряду со специально органи­зованными испытаниями возможна реализация натурного мо­делирования путем обобщения опыта, накопленного в ходе про­изводственного процесса, т.е. можно говорить о производствен­ном эксперименте. Здесь на базе теории подобия обрабатывают статистический материал по производственному процессу и по­лучают его обобщенные характеристики. Необходимо помнить про отличие эксперимента от реального протекания процесса. Оно заключается в том, что в эксперименте могут появиться от­дельные критические ситуации и определиться границы устой­чивости процесса. В ходе эксперимента вводятся новые факторы


и возмущающие воздействия в процесс функционирования объекта.

Другим видом реального моделирования является физическое, отличающееся от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследует­ся поведение либо реального объекта, либо его модели при за­данных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и модельном (псевдореальном) масштабах времени или рассматри­ваться без учета времени. В последнем случае изучению подле­жат так называемые «замороженные» процессы, фиксируемые в некоторый момент времени.

132

ПРИНЦИПЫ И ПОДХОДЫ К ПОСТРОЕНИЮ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ

Математическое моделирование многие считают скорее ис­кусством, чем стройной и законченной теорией. Здесь очень ве­лика роль опыта, интуиции и других интеллектуальных качеств человека. Поэтому невозможно написать достаточно формали­зованную инструкцию, определяющую, как должна строиться модель той или иной системы. Тем не менее отсутствие точных правил не мешает опытным специалистам строить удачные мо­дели. К настоящему времени уже накоплен значительный опыт, дающий основание сформулировать некоторые принципы и под­ходы к построению моделей. При рассмотрении порознь каждый из них может показаться довольно очевидным. Но совокупность взятых вместе принципов и подходов далеко не тривиальна. Мно­гие ошибки и неудачи в практике моделирования являются пря­мым следствием нарушения этой методологии.

Принципы определяют те общие требования, которым долж­на удовлетворять правильно построенная модель. Рассмотрим эти принципы.

1. Адекватность. Этот принцип предусматривает соответствие модели целям исследования по уровню сложности и организа-


При моделирования наиболее сложных нроцессч>в (например, процессов целеобразования, с >вершенствования организационных структур и т. п.) "механизм" развития (самооргагизации) мохсет быть реализован в форме сскявегстьующей методики системного анализа (примеры которых рассматриваются в гл, вах 4, 5).

Рассматриваемый класс систем можно paiC *гь на подклассы, "выделив адаптивные или сямоприспосабливающш и системы, само­обучающиеся системы, самовосстанавливающиес . аммоспроизво­дящиеся и т. п. классы, в которых в различной «. er jhh реализуют­ся рассмотренные выше и еще не изученные (на рь мер, для само­воспроизводящихся систем) особенности.

При представлении объекта классом самоорга; изующихся си­стем задачи определения целей и выбора средств, ка-< правило, раз­деляются. При этом задачи определения целей, с»ыЬора средств, в свою очередь, могут быть описаны в виде самоорганизующихся систем, т. е. структура основных направления, плана, структура функциональной части АСУ должна развиваться так же (и даже здесь нужно чаще включать "механизм" развития), как и структура обеспечивающей части АСУ, организационная структура пред­приятия и т. д.

Большинство из рассматриваемых в последующих главах при­меров методов, моделей и методик системного анализа основано на представлении объектов в виде самоорганизующихся систем, хотя не всегда это будет особо оговариваться.

Рассмотренные классы систем удобно использовать как подходы на начальном этапе моделирования любой задачи. Этим классам поставлены в соответствие методы формализованного предста­вления систем (см. гл. 2), и таким образом, определив класс си­стемы, можно дать рекомендации по выбору метода, который по­зволит более адекватно ее отобразить.

1.5. Закономерности систем

Закономерности взаимодействия части и целого. В процессе изучения особенностей функционирования и развития сложных си­стем с активными элементами был выявлен ряд закономерностей, помогающих глубже понять диалектику части и целого в системе и формировать более адекватные модели принятия решений. Рассмо­трим основные из этих закономерностей.

Целостность. Закономерность целостности (эмер-джентностъ) проявляется в системе в возникновении у нее "новых интегративных качеств, несвойственных ее компонентам "[1.1].

Проявление этой закономерности легко пояснить на примерах поведения популяций, социальных систем и даже технических объ-54


54


Глава 1


Основы системного анализа


55


 


 


ции, а также соответствие реальной системе относительно выб­ранного множества свойств. До тех пор, пока не решен вопрос, правильно ли отображает модель исследуемую систему, ценность модели незначительна.

2. Соответствие модели решаемой задаче. Модель должна стро­иться для решения определенного класса задач или конкретной задачи исследования системы. Попытки создания универсальной модели, нацеленной на решение большого числа разнообразных задач, приводят к такому усложнению, что она оказывается прак­тически непригодной. Опыт показывает, что при решении каждой конкретной задачи нужно иметь свою модель, отражающую те ас­пекты системы, которые являются наиболее важными в данной задаче. Этот принцип связан с принципом адекватности.

3. Упрощение при сохранении существенных свойств системы. Модель должна быть в некоторых отношениях проще прототи­па - в этом смысл моделирования. Чем сложнее рассматривае­мая система, тем по возможности более упрощенным должно быть ее описание, умышленно утрирующее типичные и игнорирующее менее существенные свойства. Этот принцип может быть назван принципом абстрагирования от второстепенных деталей.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.