скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Развитие понятия "Пространство" и неевклидова геометрия

Эти рассуждения позволяют принять следующее общее определение n-мерных неевклидовых геометрий.

Неевклидовыми геометриями n-измерений называются геометрии, которые порождаются на n-мерных сферах, Sn вещественного или чисто мнимого радиуса в (n+1)-мерном евклидовом соответственно псевдоевклидовом пространстве. Предполагается также» что диаметрально противоположные точки этих сфер отождествлены, т. е. такие пары точек считаются за одну точку.

Из этого определения следует, что при возрастании n число типов неевклидовых пространств также растет. Неевклидовы геометрии являются геометриями простейших римановых пространств определенной и неопределенной метрики, составляющих так называемый класс пространств постоянной ненулевой кривизны. Каждое из таких n-мерных пространств допускает совокупность движений, зависящую от n(n+1)/2 параметров.

Очевидно, при n=2 получим эллиптическую плоскость и плоскость Лобачевского. Геометрия, этих плоскостей будет соответственно геометрией сферы евклидова пространства и геометрией сферы чисто мнимого радиуса в псевдоебклидовом пространстве.

Наша ближайшая задача — вывести основные формулы сферического треугольника (так называется треугольник на сфере, образованный тремя дугами больших окружностей). Эти формулы выражают основные математические соотношений в треугольниках геометрии Лобачевского.

а) Сначала докажем так называемую теорему косинусов. Предположим, что нам дан сферический треугольник с вершинами А(), В (), С (), углами A, В, С и противолежащими сторонами соответственно а, b, с.

Очевидно, эти стороны связаны с радиус-векторами вершин сферического треугольника следующими равенствами

 (3.21)

Предположим далее, что касательная плоскость к сфере в точке С пересекает радиусы ОА и ОВ в точках  и . Эти числовые множители, радиусов векторов точек A1 и B1 определяются совсем просто, если учесть ортогональность векторов ,  и ,  Действительно,

т. е.

.

Отсюда на основании (3.21) следует, что

. (3.22)

Повторяя приведенные рассуждения для другой пары  и  ортогональных векторов, получим


. (3.23)

Найдем теперь скалярное произведение векторов  и . С одной стороны, имеем

,

Где

Следовательно, на основании (3.22, 3.23) имеем

Поэтому

.

С другой стороны,

.

Применяя затем (3.21), (3.22), (3.23), получим


 (3.25)

Сравнивая (3.24) и (3.25), заключаем

Или

. (3.26)

Формула (3.26) не зависит от нашего предположения о точках пересечения А1 и В1. Эта формула выражает теорему косинусов сферического треугольника сферы чисто мнимого радиуса: косинус гиперболической стороны сферического треугольника равен произведению косинусов гиперболических двух других сторон без произведения синусов гиперболических этих же сторон на косинус угла между ними.

б) Переходим теперь к выводу теоремы синусов. Вычислим для этого квадрат отношения . На основании (3.26), имеем

. (*)

Видим, что числитель правой части является симметричным выражением относительно переменных а, b, с. Нетрудно убедиться, что такой же симметричностью относительно этих переменных обладает и знаменатель. В самом деле

 (3.27)

Таким образом, квадрат искомого отношения симметричен относительно сторон а, b, с. Это означает, что заменяя обозначения сторон а, b, с и углов А, В, С в круговом порядке в (*) получим отношения , , равные . Извлекая из этих отношений квадратные корни, получим формулы

, (3.28)

выражающую теорему синусов сферического треугольника в геометрии сферы чисто мнимого радиуса: синусы гиперболических сторон сферического треугольника относятся как синусы противолежащих углов.

в) Заметим, что формулы (3.26) и (3.28) геометрии сферы чисто мнимого радиуса r = ki в псевдоевклидовом пространстве можно получить из соответствующих формул сферического треугольника в евклидовом пространстве, заменяя  на ,  на ,  на .

Применяя это правило, получим вторую теорему косинусов для сферического треугольника в случае сферы мнимого радиуса:


 (3.29)

Иначе, косинус угла сферического треугольника равен произведению синусов двух других углов на косинус гиперболической стороны между этими углами без произведения косинусов двух других углов.

Отсюда следует, что если углы одного сферического треугольника равны соответствующим углам другого сферического треугольника, то такие треугольники равны.

Формулы прямоугольного треугольника

Предположим, угол С треугольника AВС является прямым. Применяя теорему косинусов (3.26), получим

. (3.30)

Это равенство выражает теорему Пифагора в геометрии Лобачевского: косинус гиперболической гипотенузы прямоугольного треугольника равняется произведению косинусов гиперболических катетов. Применяя формулу (3.28) будем иметь:

, (3.31)

. (3.32)

Полученные формулы можно выписать по мнемоническому правилу, аналогичному правилу Непера в сферической геометрии.

В этих формулах связываются пять элементов прямоугольного треугольника, которые можно рассматривать в циклическом порядке . Для каждого элемента предшествующий и последующий элементы называются прилежащими, а остальные два элемента - противолежащими элементами. Мнемоническое правило формулируется следующим образом.

Косинус элемента прямоугольного треугольника в геометрии Лобачевского равняется произведению синусов противолежащих элементов или произведению котангенсов прилежащих элементов.

Если под знаком функции входит угол, то функция понимается в тригонометрическом смысле. Если же входит длина, то она делится на радиус кривизны и их функция понимается в гиперболическом смысле. Наконец, в случае, когда под знаком функции стоит катет, функция меняется на смежную: синус — на косинус, тангенс — на котангенс и наоборот.

Пользуясь приведенным правилом, получим для каждого элемента соответствующие выражения через прилежащие и противолежащие элементы прямоугольного треугольника:

  (3.33)

Основная формула Лобачевского

Пусть дана на плоскости Лобачевского прямая a и точка A, не инцидентная ей. Опустим из точки А перпендикуляр АВ на прямую а (рис. 19). Проведем также через точку А прямую АО, параллельную прямой а в каком-нибудь направлении. Угол , как указывали выше, называется углом параллельности, а ответствующим отрезку АВ. Для получения основной формул Лобачевского, связывающей угол параллельности ВАО = П(p) с отрезком p=АВ, возьмем на луче ВО какую-нибудь точку С. Для прямоугольного треугольника AВС, имеем

Будем удалять теперь точку С по лучу до бесконечности, стремится при этом к 1 и в пределе, получим

Отсюда следует, что

Вставляя в последнее равенство

окончательно получим


Эта формула, связывающая угол параллельности П(р) с соответствующим отрезком р, называется основной формулой Лобачевского. Из нее следует, что угол параллельности является монотонно убывающей функцией. Если отрезок параллельности р стремится к нулю, то угол параллельности стремится к прямому углу, если же р стремится к бесконечности, то угол П(р) стремиться к нулю.

Геометрия сферы пространства Лобачевского

Возьмем в трехмерном пространстве Лобачевского сферу радиуса R с центром в некоторой точке О. На этой сфере индуцируется некоторая сферическая геометрия. Получающаяся совокупность предложений называется геометрией сферы в пространстве Лобачевского. Рассмотрим в этой геометрии прямоугольный треугольник AВС, образованный из дуг АВ = с, АС = b, ВС = a больших кругов. Дуги больших кругов здесь, как и в сферической геометрии обычного пространства являются кратчайшими для достаточно близких точек на сфере. Углы между большими кругами понимаются как линейные углы двугранных углов, образованных плоскостями больших кругов. Предположим, что угол С данного треугольника прямой. Опустим далее из точки В перпендикуляры ВА1 и ВС1 на радиусы ОА и ОС соответственно. Применяя известные формулы к прямоугольному треугольнику ОВС1 (рис. 20), получим

Аналогично из треугольников ОВА1 и А1ВС1 следует, что


Исключая из этих трех соотношений ВС1 и ВA1, получим формулу

совпадающую с соответствующей формулой для прямоугольного сферического треугольника в евклидовом пространстве. Выведем теперь теорему Пифагора для прямоугольного треугольника ABС в геометрии сферы в пространстве Лобачевского. Из треугольника ОВС1 имеем

Аналогично из треугольников ОВА1 и OA1C1 соответственно следует, что

Исключая из полученных трех равенств отрезки ОС1 и OA1 выводим

Эта формула совпадает с соответствующей формулой для прямоугольного треугольника обычной сферической геометрии. Указанным способом можно убедиться, что в целом геометрия сферы пространства Лобачевского совпадает с геометрией сферы евклидова пространства.

О геометрии Лобачевского в малом

Предположим теперь, что в треугольнике линейные размеры a, b, c малы по сравнению с радиусом кривизны k пространства. Это предположение заведомо выполняется для треугольников с малыми линейными размерами или в пространстве достаточно малой кривизны 1/k2. Разлагая в степенные ряды гиперболические функции в формуле (3.26), выражающей теорему косинусов в геометрии Лобачевского, получим

Учитывая здесь члены до второго порядка малости включительно, будем иметь

a2 = b2 + c2 – 2 bc cosA.

Эта зависимость между элементами треугольника выражает теорему косинусов в евклидовой геометрии. В случае прямоугольного треугольника cosA=0; следовательно,

a2 = b2 + c2

т. е. справедлива теорема Пифагора. Далее при наших предположениях синусы гиперболические в формуле (3.28) в первом приближении пропорциональны аргументам, поэтому

т. е. стороны треугольника пропорциональны синусам противолежащих углов. Последние три равенства позволяют утверждать, что формулы геометрии Лобачевского для фигур с малыми линейными размерами совпадают с соответствующими формулами евклидовой геометрии.

2.4 Различные модели плоскости Лобачевского. Независимость 5-го постулата Евклида от остальных аксиом Гильберта

В предыдущем параграфе познакомились с основными формулами двухмерной геометрии Лобачевского, которые в то же время были формулами геометрии сферы чисто мнимого радиуса в псевдоевклидовом пространстве.

Эта сфера, по существу, есть одна из возможных моделей плоскости Лобачевского. Другая модель - модель Бельтрами-Клейна. Она получилась из первой модели путем центрального проектирования точек сферы на какую-нибудь ее касательную плоскость. Последняя, очевидно, будет евклидовой плоскостью.

Плоскость Лобачевского в модели Бельтрами-Клейна изображается в виде внутренности круга, причем прямые изображаются хордами. Пересекающиеся прямые изображаются пересекающимися хордами. Если общая точка будет стремиться по одной из прямых к бесконечности, то параллельные прямые будут изображаться хордами, общая точка которых принадлежит абсолюту (ограничивающей внутренность круга окружности). Наконец, сверхпараллельные прямые в рассматриваемой модели изображаются хордами, которые, будучи продолжены, пересекутся в точке, принадлежащей внешней области абсолюта.

Нетрудно убедиться, что пучок прямых первого рода при Данном отображении переходит в совокупность хорд, пересекающихся в общей точке, принадлежащей внутренности абсолюта. Пучок прямых второго рода, т. е. прямых, параллельных друг другу в данном направлении, переходит в совокупность хорд, пересекающихся в некоторой точке абсолюта. Наконец, пучок прямых третьего рода отображается в совокупность хорд, пересекающихся в некоторой точке вне абсолюта. Точки абсолюта называются бесконечно удаленными точками и точки вне абсолюта - идеальными точками плоскости Лобачевского. Поэтому пучки прямых второго и третьего родов называются иногда пучками с бесконечно удаленными или соответственно идеальными центрами.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.