скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Развитие понятия "Пространство" и неевклидова геометрия

Пара полупрямых h и k, выходящих из одной и той же точки О и не лежащих на одной прямой, называется углом и обозначается символом  или .

Если полупрямые задаются двумя своими точками ОА и ОВ, то мы будем обозначать угол символом  или . В силу теоремы 4 любые два луча h и k, составляющие угол , определяют, и притом единственную, плоскость α.

Внутренними точками  будем называть те точки плоскости α, которые, во-первых, лежат по ту сторону от прямой, содержащей луч h, что и любая точка луча k, и, во-вторых, лежат по ту сторону от прямой, содержащей луч k, что и любая точка луча h.

III, 4. Пусть даны  на плоскости α, прямая а’ на этой же или на какой-либо другой плоскости α’ и задана определённая сторона плоскости α’ относительно прямой а’. Пусть h’ – луч прямой а’, исходящий из некоторой точки О’. Тогда на плоскости α’ существует один и только один луч k’ такой, что  конгруэнтен , и при этом все внутренние точки  лежат по заданную сторону от прямой а’. Каждый угол конгруэнтен самому себе.

III, 5. Пусть А, В и С – три точки, не лежащие на одной прямой, А’, B’ и С’ – другие три точки, также не лежащие на одной прямой. Тогда если отрезок АВ конгруэнтен отрезку А’B’, отрезок АС конгруэнтен отрезку А’C’ и  конгруэнтен , то  конгруэнтен  и  конгруэнтен

Договоримся теперь о сравнении неконгруэнтных отрезков и углов.

Будем говорить, что отрезок АВ больше отрезка А’B’, если на прямой, определяемой точками А и В, найдётся лежащая между этими точками точка С такая, что отрезок АС конгруэнтен отрезку А’В’. Будем говорить, что отрезок АВ меньше отрезка А’B’, если отрезок А’B’ больше отрезка АВ.

Символически тот факт, что отрезок АВ меньше отрезка А’B (конгруэнтен отрезку А’B’) будем записывать так:

АВ<A’B’ (AB=A’B’).

Будем говорить, что  больше , если в плоскости, определяемой , найдётся луч ОС, все точки которого являются внутренними точками , такой, что  конгруэнтен . Будем говорить, что  меньше , если  больше .

С помощью аксиом принадлежности, порядка и конгруэнтности можно доказать целый ряд теорем элементарной геометрии. Сюда относятся: 1) три широко известные теоремы о конгруэнтности (равенстве) двух треугольников, 2) теорема о конгруэнтности вертикальных углов, 3) теорема о конгруэнтности всех прямых углов, 4) теорема о единственности перпендикуляра, опущенного из точки на прямую, 5) теорема о единственности перпендикуляра, проведённого к данной точке прямой, 6) теорема о внешнем угле треугольника, 7) теорема о сравнении перпендикуляра и наклонной.

IV. Аксиомы непрерывности

С помощью аксиом принадлежности, порядка и конгруэнтности мы произвели сравнение отрезков, позволяющее заключить, каким из трёх знаков <, = или > связаны эти отрезки.

Указанных аксиом, однако, недостаточно 1) для обоснования возможности измерения отрезков, позволяющее поставить в соответствие каждому отрезку определённое вещественное число, 2) для обоснования того, что указанное соответствие является взаимно однозначным.

Для проведения такого обоснования следует присоединить к аксиомам I, II и III две аксиомы непрерывности.

IV, 1 (аксиома Архимеда). Пусть АВ и СD – произвольные отрезки. Тогда на прямой, определяемой точками А и В существует конечное число точек А1, А2, ..., Аn, расположенных так, что точка А1 лежит между А и А2, точка А2 лежит между А1 и А3, ..., точка Аn-1 лежит между Аn-2 и Аn, причём отрезки АА1, А1А2, ..., Аn-1An конгруэнтны отрезку CD и точка В лежит между А и Аn.

IV, 2 (аксиома линейной полноты). Совокупность всех точек произвольной прямой а нельзя пополнить новыми объектами (точками) так, чтобы 1) на пополненной прямой были определены соотношения «лежит между» и «конгруэнтен», определён порядок следования точек и справедливы аксиомы конгруэнтности III, 1 – 3 и аксиома Архимеда IV, 1, 2) по отношению к прежним точкам прямой определённые на пополненной прямой соотношения «лежит между» и «конгруэнтен» сохраняли старый смысл.

Присоединение к аксиомам I, 1 – 3, II и III, 1- 3 аксиомы Архимеда позволяет поставить в соответствие каждой точке произвольной прямой а определённое вещественное число х, называемое координатой этой точки, а присоединение ещё и аксиомы линейной полноты позволяет утверждать, что координаты всех точек прямой а исчерпывают множество всех вещественных чисел. Пользуясь этим, можно обосновать метод координат.

V. Аксиома параллельности

Самая последняя аксиома играет в геометрии особую роль, определяя разделение геометрии на две логически непротиворечивые и взаимно исключающие друг друга системы: евклидову и неевклидову геометрии.

В геометрии Евклида эта аксиома формулируется так.

V. Пусть а – произвольная прямая и А – точка, лежащая вне прямой а, тогда в плоскости α, определяемой точкой А и прямой а существует не более одной прямой, проходящей через А и не пересекающей а.

Долгое время геометры пытались выяснить, не является ли аксиома параллельности следствием всех остальных аксиом. Этот вопрос был решен Николаем Ивановичем Лобачевским, который доказал независимость аксиомы V от аксиом I – IV.

По-другому результат Лобачевского можно сформулировать так: если к аксиомам IIV присоединить утверждение, отрицающее справедливость аксиомы V, то следствия всех этих положений будут составлять логически непротиворечивую систему (неевклидову геометрию Лобачевского).

Систему следствий, вытекающих из одних только аксиом I – IV обычно называют абсолютной геометрией. Абсолютная геометрия является общей частью как евклидовой, так и неевклидовой геометрий, ибо все предложения, которые могут быть доказаны только с помощью аксиом I – IV, верны как в геометрии Евклида, так и в геометрии Лобачевского.

Доказательство непротиворечивости аксиоматики Гильберта

Чтобы доказать непротиворечивость некоей теории Х, необходимо из материала другой, заведомо непротиворечивой, теории А построить такую модель, в которой выполняются все аксиомы теории Х. Если это удастся, теорию Х можно считать непротиворечивой. Следовательно, для того, чтобы доказать непротиворечивость гильбертовой системы, необходимо построить такую модель евклидовой геометрии, в которой выполнялись бы все аксиомы, предложенные Гильбертом.

Для построения такой модели, необходима вышеупомянутая заведомо непротиворечивая теория. В модели, построенной Гильбертом, такой теорией служит теория действительных чисел. Идея построения модели состояла в рассмотрении системы координат на плоскости. В такой системе каждой точке М плоскости соответствуют два числа х и у – е координаты. Чтобы понять суть построения модели забудем о плоскости и имеющейся на ней координатной системе, «точками» будем называть упорядоченные пары действительных чисел (х; у) т. е. пары (х; у) и (у; х) с различными х и у будем считать различными. Теперь попытаемся определить «прямую». Вспомним, что каждая прямая описывается в координатах линейным уравнением вида ax + by + c = 0, где хотя бы один из коэффициентов a и b отличен от нуля. Например, уравнение прямой, не параллельной оси ординат, имеет вид у = kx + l, или, что то же самое, ax + by + c = 0, где a = k, b = -1, c = l. Если же прямая параллельна оси ординат, ей соответствует уравнение x = p (т. е. уравнение ax + by + c = 0, где a = 1, b = 0, c = -p;). При этом если все коэффициенты уравнения ax + by + c = 0 умножить на одно и то же число k ≠ 0, то полученное уравнение будет описывать ту же прямую. Мы же в своей модели будем называть «прямой» любое линейное уравнение вида ax + by + c = 0, в котором хотя бы один из коэффициентов a и b отличен от нуля, причём коэффициенты рассматриваются с точностью до ненулевого множителя пропорциональности (при k ≠ 0 уравнения ax + by + c = 0 и (ak)x + (bk)y + kc = 0 считаются одной и той же прямой).

Далее, «точка» (х1; у1) лежит на «прямой», если числа х1 и у1 удовлетворяют указанному уравнению. Как видим, для определения «прямых», «точек» и расположения «точек» на «прямой» достаточно опереться на теорию действительных чисел. Легко проверить, что в указанной модели выполняются, например, такие аксиомы:

1. Через две различные «точки» проходит «прямая»

2. На «прямой» имеется не менее двух «точек»

Легко определить случай, при котором одна из трёх «точек» лежит на «прямой» «между» двумя другими. Когда A(x1; y1), B(x2; y2) и C(x3; y3) – три «точки», лежащие на одной «прямой», «точка» B считается расположенной «между» A и C при условии, что число x2 заключено между числами x1 и x3 (если x1 = x2 = x3, то y2 заключено между y1 и y3). Тогда очевидно, что

3. Из трёх «точек», лежащих на одной «прямой», одна и только одна расположена между двумя другими.

Выполняются и другие аксиомы порядка (в частности, аксиома Паша). Заметим, что мы специально не иллюстрируем содержание аксиом чертежами, поскольку при чисто аксиоматическом изложении не следует использовать привычные геометрические представления.

Будем говорить, что две «прямые» a1x + b1y + c1 = 0 и a2x + b2y + c2 = 0 «параллельны», если коэффициенты a1, b1 и a2, b2 пропорциональны. Это можно кратко записать равенством a1b2a2b1 = 0. Нетрудно проверить, что две «параллельные» «прямые» либо не имеют ни одной общей «точки», либо совпадают (в обычной геометрии тоже часто принимают, что прямая параллельна самой себе). Более того,

4. Через любую «точку» A1(x1; y1) проходит одна и только одна «прямая», параллельная данной «прямой» Ax + By + C = 0.

Иначе говоря, в указанной модели выполняется аксиома параллельности. Можно здесь говорить и о длинах отрезков, и о величинах углов. Например, «расстоянием» между двумя «точками» A1(x1; y1) и A2(x2; y2) называется число

A1A2 =

Далее, в привычной евклидовой геометрии справедлива теорема косинусов:


cos C =

(величина угла С равна арккосинусу правой части равенства. Можно возразить, что тригонометрические функции (и, в частности, косинус) определяются геометрически и обойтись без обычной евклидовой геометрии в данном случае невозможно. Однако это неверно. В математическом анализе доказывается, что функция cos x задаётся бесконечным рядом

cos x = ,

который сходится для любого действительного x. Таким образом, в рассматриваемой модели допустимо говорить и о расстояниях, и о величинах углов.

Так же легко проверить, что в ней выполняются и аксиомы конгруэнтности (в частности, первый и второй признаки равенства треугольников). В итоге все гильбертовы аксиомы (представляющие собой развитие и уточнение аксиом Евклида) в рассматриваемой модели выполняются. Это и означает, что система аксиом евклидовой геометрии условно непротиворечива. Другими словами, она непротиворечива, если непротиворечива теория действительных чисел.

1.4 Другие системы аксиом геометрии

Вернёмся, однако, к евклидовой геометрии. В настоящее время систему аксиом Гильберта часто заменяют эквивалентной ей системой. Мы приведём те группы аксиом одной такой системы, по которым она отличается от вышеизложенной системы (группы аксиом порядка и движения, заменяющей в этой системе группу аксиом конгруэнтности).

Преимущество этой системы заключается в том, что она позволяет проще и быстрее получить первоначальные геометрические факты, лучше, как многим кажется, описывает свойства основных геометрических объектов с точки зрения привычных представлений.

II. Аксиомы порядка

Будем полагать, что на прямой есть два направления, взаимно противоположных друг другу, и по отношению каждому из них каждая пара точек А и В находится в известном отношении, которое выражается словом «предшествовать». Это отношение обозначается знаком <, так что выражение «А предшествует В» можно символически записать так:

А < B.

Требуется, чтобы указанное отношение для точек на прямой удовлетворяло нижеследующим пяти аксиомам.

II, 1. Если А < В в одном направлении, то В < А в противоположном направлении.

II, 2. В одном из двух направлений А < В исключает В < А.

II, 3. В одном из двух направлений если А < В и В < С, то А < С.

II, 4. В одном из двух направлений для каждой точки В найдутся точки А и С такие, что А < B < C.

Каждое из утверждений аксиом II, 2 – 4 относится к одному из двух направлений на прямой. По аксиоме II, 1 оно верно также и для противоположного направления.

Прежде чем сформулировать последнюю аксиому, определим некоторые понятия. Пусть а – прямая и А точка на ней. При фиксированном направлении на прямой точка А разбивает её на две части (полупрямые), для каждой точки Х одной из них Х < А, а для каждой точки Х другой полупрямой А < X. Очевидно, это разбиение прямой на части не зависит от выбранного на ней направления (аксиома II, 1).

Пусть А и В – две точки прямой а. Если для точки С прямой а выполняется условие А < C < В или В < C < А, то мы будем говорить, что точка С лежит между точками А и В. Очевидно, свойство точки лежать между двумя данными не зависит от направления на прямой. Часть прямой а, все точки которой лежат между А и В, мы будем называть отрезком АВ, а точки А и В – концами отрезка.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.