скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Развитие понятия "Пространство" и неевклидова геометрия

Отношение расстояния между точками к радиусу кривизны называется приведенным расстоянием. Две точки плоскости S2 называются полярными, если соответствующие этим точкам прямые трехмерного евклидова пространства ортогональны. Другими словами, полярные точки характеризуются тем, что приведенное расстояние между ними равняется . Отрезок прямой, ограниченный полярно сопряженными точками, называется полупрямой. Прямая состоит из двух полупрямых и имеет длину, равную . Очевидно, геометрическое место точек, полярных данной точке А (х1, у1, z1), образует прямую


 (2.1')

Эта прямая называется полярой точки A, а точка А - полюсом прямой (2.1').

Прямые, перпендикулярные прямой, пересекаются в ее полюсе. Обратно, всякая прямая, проходящая через полюс данной прямой, будет перпендикулярной к этой прямой. Отсюда следует, что через каждую точку плоскости, отличную от полюса данной прямой, можно провести единственный перпендикуляр к этой прямой. Эти свойства непосредственно вытекают из определения полюсов и поляр.

В геометрии S2 можно построить взаимно однозначное отображение между точками и прямыми, при котором каждой точке соответствует ее полярная прямая, а каждой прямой - ее полюс. Такое отображение называется полярным отображением. В эллиптической плоскости единичной кривизны полярное отображение переводит две прямые а, b в такие точки А, В, что расстояние между этими точками равняется углу между данными прямыми. Отсюда вытекает так называемый принцип двойственности в эллиптической планиметрии: если в какой-нибудь теореме эллиптической геометрии заменить слова «точка», «прямая», «расстояние» и «угол» соответственно на слова «прямая», «точка», «угол» и «расстояние», то в результате получим также справедливое предложение в этой геометрии. Примером двойственных предложений, т. е. предложений, получающихся одно из другого, указанного правила является следующее: любые две точки определяют прямую, им инцидентную; любые две прямые определяют точку, им инцидентную.

Найдем теперь расстояния между двумя бесконечно близкими точками М (х, у, z) и M’ (х + dх, у + dу, z + dz). Из формулы (2.1) следует, что


. (2.2)

Откуда с точностью до бесконечно малых второго порядка включительно имеем

ds=-2(xdx+ydy+zdz).

Учитывая, что координаты точки (х + dх, у + dу, z + dz) удовлетворяют равенству

(х + dх)2 +(у + dу)2+ (z + dz)2 =R2,

будем иметь

2(хdх + уdу + zdz) + dx2 + dу2 + dz2 = 0.

ds2 = dx2 + dу2 + dz2. (2.2')

Полученная формула приводит к очевидному выводу о том, что в малом геометрия эллиптической плоскости совпадает со сферической геометрией. В частности, формулы (1.12) и (1.13) выражающие соответственно теорему косинусов и синусов, справедливы и в эллиптической геометрии. Формула 2.2' показывает также, что движения эллиптической плоскости S2 представляются вращениями и отражениями евклидова пространства E3 вокруг начала координат. Указанные движения определяются ортогональными матрицами. Так называются матрицы, у которых сумма квадратов элементов каждого столбца равняется единице, а сумма произведений соответствующих элементов разных столбцов равняется нулю. Так как матрицы, отличающиеся знаками, индуцируют одно и то же движение в эллиптической плоскости, то группа движений последней связана.

Площадь треугольников в эллиптической геометрии

Пусть в эллиптической плоскости дан треугольник AВС, обозначенной на рис. 8 номером I. Как известно, на данной плоскости порождаются еще три треугольника с теми же вершинами. Эти треугольники обозначены на рисунке номерами II, III, IV. Так как вcя эллиптическая плоскость конечна и имеет площадь, равную 2R2 , то площадь части плоскости, ограниченной вертикальными углами А треугольника I, равняется

Аналогично, площадь частей эллиптической плоскости, ограниченных вертикальными углами В и С треугольника AВС, равны 2R2B, 2R2С. С другой стороны, сумма всех трех найденных площадей составляет площадь всей эллиптической плоскости с добавленной удвоенной площадью SАВС данного треугольника АВС. В результате получаем

.

Отсюда вытекает, что

SАВС = R2(A + B + C - ). (2.3)

Эта формула показывает, что площадь треугольника пропорциональна его дефекту. Можно доказать, что в геометрии Лобачевского площадь треугольника АВС определяется по формуле, аналогичной (2.3),


SАВС = k2( - A - B - C ),

где k — радиус кривизны.

Окружность

Окружностью называется геометрическое место точек М(х, у, z), отстоящих от данной точки А(х1,у1,z1) на данное расстояние r. Точка A называется центром окружности, r - ее радиусом.

К понятию окружности можно прийти другим путем, отправляясь от пучков прямых и соответствующих точек на прямых данного пучка. Эти вспомогательные понятия здесь вводятся так же, как в геометрии Лобачевского. Совокупность прямых, пересекающихся в данной точке A, называется пучком прямых первого рода. Точка А называется центром пучка. Пучком прямых второго рода называются прямые плоскости, перпендикулярные данной прямой а. Нетрудно убедиться, что эти пучки двойственны друг другу. В самом деле, поляра центра пучка прямых первого рода ортогонально пересекает все прямые пучка и рассматриваемая совокупность прямых является пучком прямых второго рода. Обратно, прямые пучка второго рода проходят через полюс оси пучка и составляют пучок прямых первого рода. Таким образом, всякий пучок прямых одновременно является пучком первого и второго рода. Предположим, что точки М и N лежат соответственно на прямых тиn данного пучка прямых. Эти точки М, N называются соответствующими, если отрезок МN образует равные односторонние углы с прямыми т и n. Простейшая кривая здесь определяется так же, как в планиметрии Лобачевского. Эта кривая по определению является множеством точек, соответствующих точке М на прямой т данного пучка. Полученная таким образом простейшая кривая одновременно является окружностью радиуса r с центром в точке А и эквидистантой с высотой r' = R/2 — r. Можно установить, что окружность ортогонально рассекает прямые своего пучка.

Из (2.1) следует, что уравнение окружности (рис.9) с центром в точке А(х1,у1,z1) и радиусом r < R/2 приводится к виду:

 . (2.4)

Наличие двойного знака объясняется тем, что правая часть положительна, а выражение в скобках может иметь значение разных знаков.

Заметим, что множество точек, равноудаленных от двух точек A, В, состоит из двух взаимно перпендикулярных прямых, проходящих через полюс прямой, определенной данными точками. Одна из этих прямых делит пополам один отрезок АВ, а другая - дополнительный. Отсюда вытекает существование одной и только одной окружности, описанной около заданного треугольника АВС. В частности, три точки, не принадлежащие прямой, определяют на эллиптической плоскости четыре треугольника. Таким образом, через три точки А, В, С, не лежащие на одной прямой, можно провести четыре окружности, которые на сферической модели определяются следующими тройками точек: АВС, АВС', АВ'С, А'ВС, где А', В', С' обозначают точки, диаметрально противоположные соответственно к точкам А, В, С.

Рассмотрим вкратце свойства пар окружностей в эллиптической плоскости. В сферической геометрии две окружности, как и в евклидовой плоскости, могут не пересекаться друг с другом, касаться или пересекаться в двух точках. В эллиптической геометрии свойства пар окружностей более многообразны. Чтобы убедиться в этом, предположим, что эллиптическая плоскость интерпретирована в виде сферы, у которой диаметрально противоположные точки отождествлены. В этом случае, окружность эллиптической плоскости представляется на такой сфере в виде двух окружностей, лежащих в параллельных и равноудаленных от центра сферы плоскостях. Обратно, две окружности, полученные от пересечения сферы симметрическими относительно ее центра плоскостями, изображают в эллиптической геометрии одну окружность. Сделанные замечания позволяют составить представление о новых случаях взаимных положений двух окружностей по сравнению с сферической или евклидовой планиметрией.

2.3 Геометрия Лобачевского в системе Вейля

О псевдоевклидовой планиметрии

а) В евклидовой плоскости, как известно, формула квадрата расстояния между двумя точками М(х1, х2) и N(у1, у2) в декартовой, прямоугольной системе координат представляется в виде

d(M,N)2=(y1 - x1)2+(y2 - x2)2.  (3.1)

Угол  между векторами ОМ и ОN вычисляется из соотношения

. (3.2)

Первая формула по существу выражает теорему Пифагора для прямоугольного треугольника с катетами, равными абсолютным величинам  и гипотенузой МN. Вторая же формула представляет собою формулу косинуса разности углов, образованных соответственно ОМ и ON c координатным вектором .

Теперь изменим формулы (3.1) и (3.2) и будем определять расстояние между указанными двумя точками и величины данных углов по формулам соответственно


d(M,N)=(y1 - x1)2 - (y2 - x2)2 (3.3)

 (3.4)

Прежние пары точек теперь будут иметь другие расстояния» а прежние углы – другие величины. Это по существу новая своеобразная двухмерная геометрия.

Чтобы подчеркнуть наличие другой метрики и не путать новые расстояния и величины углов со старыми, условимся называть координатную плоскость (x1, x2) формулами (3.3), (3.4) псевдоевклидовой плоскостью.

б) Для большей аналогии с евклидовой геометрией целесообразно ввести новое скалярное произведение векторов как произведение их длин на косинус угла между ними. Ясно, что это произведение векторов отличается от обычного скалярного произведения тех же векторов, так как длины векторов (расстояние между начальной его и конечной точками) и косинус угла понимается в смысле псевдоевклидовой геометрии.

Не будем далее перечислять следствий из формул (3.3), (3.4) и дадим аксиоматическое определение псевдоевклидовой геометрии. Делается это следующим образом.

Вместо аксиомы IV, 3 вейлевской аксиоматики, в которой говорится о том, что скалярный квадрат вектора неотрицательный, вводится другая аксиома IV, 3' о существовании ненулевых векторов первого, второго, и третьего типов, скалярные квадраты которых соответственно положительны, отрицательны и равны нулю.

Все другие аксиомы Вейля сохраняются без изменения в псевдоевклидовой геометрии. Конечно, предполагаем, что аксиомы размерности III соответствующим образом согласованы. Если речь идет о плоскости, то в аксиоме III, 1 утверждается существование двух линейно независимых векторов, а в аксиоме III, 2 утверждается, что всякие три вектора линейно зависимы.

Совокупность точек называется псевдоевклидовой плоскостью, если эти точки и их упорядоченные пары (свободные векторы) удовлетворяют аксиомам групп /--///, IV, 1, 2, 3', V. Очевидно, векторы псевдоевклидовой плоскости удовлетворяют аксиомам /--///- IV - 1, 2, 3' и образуют двухмерное псевдоевклидово векторное пространство.

В псевдоевклидовой геометрии аффинная часть полностью
совпадает с аффинной частью евклидовой геометрии. Но в метрических вопросах геометрии эти значительно отличаются друг
от друга, метрика пространства по существу определяется аксиомами скалярного произведения векторов и среди них важную роль играет именно аксиома IV, 3'.

в) Скалярное произведение двух векторов ,  в смысле псевдоевклидовой геометрии будем обозначать символом П. Векторы ,  называются перпендикулярными, если их скалярное произведение равно нулю.

По-прежнему число П называется скалярным квадратом вектора ; корень квадратный из П которого называется длиной вектора и обозначается через ||.Таким образом,

,

Ясно, что длина вектора будет положительной, чисто мнимой или нулевой, если соответственно скалярный квадрат П>0, П<0 или П=0. Векторы положительной и чисто мнимой длины называют также соответственно пространственными и временными.

Ненулевые векторы, длины которых равны нулю, называются изотропными.

Введем понятие прямоугольной декартовой системы координат. Прямоугольной декартовой системой координат или просто прямоугольной системой координат псевдоевклидовой плоскости называется такая аффинная система координат, векторы  которой единичны или мнимоединичны и взаимно перпендикулярны.

Следовательно, один из координатных векторов псевдоевклидовой плоскости, например,  будет единичным, а другой - мнимоединичным. Таким образом, скалярное произведение координатных векторов прямоугольной системы координат определяются равенствами

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.