скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: *-Алгебры и их применение

1.3. Двумерные *-представления *-алгебры P2 .  Обозначим через Нк область значений оператора Рк  при к = 1,2. Пусть Нк┴ - ортогональное дополнение подпространства Нк (к = 1,2) в Н. Тогда Н=H1Н1┴ , Н=H2Н2┴  

Введем дополнительные обозначения :

Н0,0 = Н1┴ ∩Н2┴, Н0,1 = Н1┴ ∩Н2, Н1,0 = Н1 ∩Н2┴, Н1,1 = Н1 ∩Н2.                       (1.1.)

Пусть dim H = 2. предположим, что существуют i и j такие, что Hij  нетривиально, то есть dim Hij  =1. Пусть, например, dim Н1,0 = 1 (остальные случаи аналогичны). Тогда в H существует ненулевой вектор h такой, что Н1,0 = л.о. {h}, но тогда P1h = h, P2h = 0; следовательно Н1,0  инвариантное подпространство. Значит в этом случае *-представление π не может быть неприводимым.

Будем считать, что Hij  ={0} для любых i = 0, 1 и j =0, 1, (то есть Hij  линейно независимы) и dim H1 = dim H2 =1. Тогда в Н можно найти два ортогональных базиса {e1, e2} и {g1, g2}, в которых матрицы операторов Р1 и Р2 имеют вид . Найдем матрицу оператора Р2 в базисе {e1, e2}.

Пусть        g1 = a11e1 + a12 e2

                  g2 = a21e1 + a22e2

                  e1 = b11g1 + b12g2

                 e2 = b21g1 + b22g2

Рассмотрим векторы h1 = eite1 и h2 = eile2, тогда

|| h1 || = || eite1 || = || e1 || = 1,             || h2 || = || eile2 || = || e2 || = 1

(h1 ,h2 ) = (eite1 , eile2) = ei(t-l)(e1, e2 ) = 0, то есть {h1 ,h2} – ортонормированный базис.

Р1h1 =ei t Р1  e1 = h1,     Р1h2 =eil Р1  e2 = 0.

Значит в базисе {h1 ,h2}  матрица оператора Р1 также имеет вид . Тогда можно считать, что a11, a12 > 0 (так как, например, a11 e1=|a11| eite1 =|a11| h1)

(e1, e2 ) = 0, значит a11 a21 = a12 a22  = 0  или , тогда существует такое комплексное число r, что

a22  = - ra11

a21 = ra12

Базис (e1, e2 )  ортонормированный; следовательно

a112 + a122 = 1

|a22 |2 + |a21 |2 = 0

тогда | r | = 1.

Р2 e1 = Р2 ( b11g1 + b12g2) = b11g1 = b11a11e1 + b11a12e2,

Р2 e2 = Р2 ( b21g1 + b22g2) = b21g1 = b21a11e1 + b21a12e2.

Найдем b11 и b21:

e1 = b11g1 + b12g2 = b11 (a11e1 + a12 e2) + b12 (a21e1 + a22e2) = (b11a11 + b12a12)e1 + (b11a12 + b12a22)e2,

b11a11 + b12a12 = 1

b11a12 + b12a22 = 0        или

b11a11 + b12a12 r = 1

b11a12 - b12a11 r = 0,

Тогда  b11 = a11.

Аналогично

E2 = b21g1 + b22g2 = (b21a11 + b22a21)e1 + (b21a12 + b22a22)e2,

b21a11 + b22a21= 0

b21a12 + b22a22 = 1,

отсюда находим, что b21 = a12.

Тогда матрица оператора Р2 в базисе {e1, e2 } будет иметь вид (обозначим ее также через Р2)

Р2 = , где a11>0, a12>0 и a112 + a122 =1

А) Пусть a112 = τ, тогда a122 =1 – τ, a11a12 = . Так как a11a12 >0, то τ(0, 1).

Тогда Р2 = .

В) Положим a11 = cosφ,тогда a12 = sinφ и Р2 запишется следующим образом

Р2 = .

Найдем коммутант π(P2). Пусть Т =  оператор перестановочный с Р1 и Р2, тогда

ТР1 =  =

Р1Т =  =

Следовательно b = c = 0.

ТР2 =  =

Р2Т =  =

Следовательно a = d. Тогда Т скалярный оператор и по лемме Шура (теорема 2.6. глава I) представление π неприводимо.

Покажем, что все эти представления неэквивалентны.

Пусть τ, ν(0, 1), τ ν. Предположим, что существует унитарный оператор в Н, устанавливающий эквивалентность. Тогда

UР1 = Р1U, следовательно U= , a, b C

UР2 (τ) =  =

Р2 (ν) U =  = .

Тогда τ = ν, следовательно U = 0 и представления неэквивалентны.

Теорема 1.1. Пусть π: PL(H) - *-представление *-алгебры P2 .

Тогда:

(i) Все одномерные и неэквивалентные представления имеют вид: π0,0(p1) = 0;  π0,0(p2) = 0;   π1,0(p1) = 1;  π1,0(p2) = 0;  π0,1(p1) = 0;  π0,1(p2) = 1;  π1,1(p1) = 1π1,1(p2) = 1;

(ii) Все двумерные неприводимые и неэквивалентные представления имеют вид: π(p1)  ,   π(p2)  τ (0, 1).

Доказательство следует из сказанного выше и в пункте (ii) можно положить π(p2) =  φ (0, ).

1.4. n – мерные *-представления *-алгебры P2 . Рассмотрим случай нечетной размерности пространства Н. Если dimН=2n+1, где n>1 натуральное, то выполняется неравенство

max (dimН1, dimН1┴) + max (dimН2, dimН2┴) > 2n+1                           (1.4.)

Тогда обязательно найдутся такие i = 0,1 и j= 0,1, что Нi,j ≠ {0}, следовательно, существует нетривиальное инвариантное подпространство относительно *-представления π, но тогда π приводимо.

Пусть теперь dimН=2nn>1 натуральное. Будем считать, что dimН1 = n, dimН2 = n и Нi,j = {0} для любых i = 0,1 и j= 0,1, то есть Нi,j  линейно независимы. Если это не так, то снова будет выполнятся неравенство (1.4.) и *-представление π окажется приводимым. При этих условиях справедлива лемма.

Лемма 1.1. Существует х ≠ 0, хН1 такой, что Р1Р2х = λх, где λС.

Доказательство. Пусть ,  ортонормированный базисы в Н, в которых матрицы операторов Р1 и Р2 имеют вид , где I единичная матрица порядка n. Пусть базисы (е) и (g) связаны уравнениями

                                       

к = 1,…, n                                          к = 1,…, n

Так как хН1, то , gk C, к = 1,…, n. Тогда

Р1Р2х = Р1Р2= Р1Р2= Р1=

= Р1= = () =

Таким образом получаем систему линейных однородных уравнений относительно q1,…, qn:

=

j = 1,…, n

Подбирая λC так, чтобы определитель этой системы обратился в нуль, получим ненулевое решение q1,…, qn. Это доказывает лемму.

Лемма 1.2. Пусть элемент х удовлетворяет условиям леммы 15. Тогда L=л.о. {х, Р2х} – инвариантное подпространство в Н относительно Р1 и Р2.

Доказательство. Проверим инвариантность L. Для любых a, b С имеем

Р1 (aх + bР2х) = + λ = (a + λb) х L,

Р2 (aх + bР2х) = aР2х + bР2х = (a + b) Р2 х L

dimL = 2, так как Нi,j = {0} (для всех i, j= 0,1).

Действительно, если aх + bР2х = 0, где, например, а ≠ 0, то х =  Р2х, значит = 0 или 1 и х Н1,1; тогда Н1,1≠{0}.

Итак, получаем предложение.

Теорема 1.2. Если dimН = nn>2, то нет неприводимых *-пред-
ставлений *-алгебры  P2 . Все неприводимые конечномерные *-представления одномерны и двумерны.

1.5. Спектральная теорема. Пусть dimН = n. В этом пункте мы получим разложение на неприводимые *-подпредставления исходного *-представления π *-алгебры P2, а также разложение пространства Н на инвариантные подпространства относительно π.

Теорема 3.1. (спектральная теорема). Существует единственное разложе-
ние Н в ортогональную сумму инвариантных относительно Р1 и Р2 подпространств

Н = Н0,0Н0,1Н1,0Н1,1  ((С2Нк)),                                   (1.1.)

где каждому подпространству Нк соответствует одно φк (0, ), φк φi при кi, dimНк = (к = 1,…, m). Пусть  Рi,j: Н Нi,j ,    Рφк: Н С2Нк ортопроекторы к = 1,…, m. Тогда существуют единственные разложения операторов

I = P0,0 P0,1 P1,0 P1,1(Рφк),                                                 (1.2.)

P1 = P1,0P1,1(( ))                                                        (1.3)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.