скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: *-Алгебры и их применение

Для доказательства следующего понадобится лемма Цорна. Напомним ее.

Лемма Цорна. Если в частично упорядоченном подмножестве Х всякое линейно упорядоченное подмножество имеет в Х верхнюю грань, то Х содержит максимальный элемент.

Теорема 2.4. Всякое представление есть прямая сумма цикличных представлений.

Доказательство. Пусть f00 – какой-либо вектор из Н. Рассмотрим совокупность всех векторов π(х)f0, где х пробегает всю *-алгебру А. Замыкание этой совокупности обозначим через Н1. Тогда Н1 инвариантное подпространство, в котором  f0  есть циклический вектор. Другими словами, Н1 есть циклическое подпространство представления π.

Если Н1 = H, то предложение доказано; в противном случае H-Н1 есть отличное от {0} инвариантное подпространство. Применяя к нему тот же прием, мы выделим циклическое подпространство Н2 ортогональное Н1.

Обозначим через М совокупность всех систем {Нα}, состоящих из взаимно ортогональных циклических подпространств представления; одной из таких систем является построенная выше система {Н1, Н2}. Упорядоченная при помощи соотношения включения совокупность М образует частично упорядоченное множество, удовлетворяющее условиям леммы Цорна; именно, верхней гранью линейно упорядоченного множества систем {Нα}М будет объединение этих систем. Поэтому в М существует максимальная система {Нα}. Но тогда Н=Нα; в противном случае в инвариантном подпространстве Н-(Нα) существовало бы отличное от {0} циклическое подпространство Н0 и мы получили бы систему {Нα}Н0М, содержащую максимальную систему {Нα}, что невозможно.

2.3. Неприводимые представления.

Определение 2.5. Представление называется неприводимым, если в пространстве Н не существует инвариантного подпространства, отличного от {0} и всего Н.

Согласно теореме 2.2. это означает, что всякий оператор проектирования, перестановочный со всеми операторами представления, равен 0 или 1.

Всякое представление в одномерном пространстве неприводимо.

Теорема 2.5. Представление π в пространстве Н неприводимо тогда и только тогда, когда всякий отличный от нуля вектор пространства Н есть циклический вектор этого представления.

Доказательство. Пусть представление π неприводимо. При fН, f ≠ 0, подпространство, натянутое на векторы π(х)f , хА, есть инвариантное подпространство; в силу неприводимости представления оно совпадает с {0} или Н. Но первый случай невозможен, ибо тогда одномерное пространство

α C инвариантно и потому совпадает с Н, то есть π(х)=0 в Н. Во втором же случае f есть циклический вектор.

Обратно, если представление π приводимо и К – отличное от {0} и Н инвариантное подпространство в Н, то никакой вектор f из К не будет циклическим для представления π в Н.

Теорема 2.6. (И.Шур) Представление π неприводимо тогда и только тогда, когда коммутант π (А) в L(H) сводится к скалярам (то есть операторам кратным единичному).

Доказательство. Пусть представление π неприводимо и пусть ограни-
ченный оператор В перестановочен со всеми операторами π(х). Предположим сначала, что В эрмитов оператор; обозначим через E(λ) спектральные проекторы оператора В. Тогда при любом λ оператор E(λ) перестановочен со всеми операторами π(х) ; в виду неприводимости представления E(λ) =0 или E(λ) =1, так как (E(λ) f, f) не убывает при возрастании λ, то отсюда следует, что существует λ0 такое, что E(λ) =0 при λ<λ0 и E(λ) =1 при λ>λ0 . Отсюда

В=λ dE(λ) = λ0 1.

Пусть теперь В – произвольный ограниченный оператор, переста-
новочный со всеми операторами π(х). Тогда В* также перестановочен со всеми операторами π(х). Действительно,

В*π(х) = (π(х*)В)* = (Вπ(х*))* = π(х)В*

Поэтому эрмитовы операторы В1=, В2= также перестановочны со всеми операторами π(х) и, следовательно, кратны единице. Но тогда и оператор В = В1+iВ2 кратен единице, то есть В – скаляр.

Обратно, пусть всякий ограниченный оператор, перестановочный со всеми операторами π(х), кратен единице. Тогда, в частности, всякий оператор проектирования, перестановочный со всеми операторами π(х) кратен единице. Но оператор проектирования может быть кратным единице только тогда, когда он равен 0 или 1. Следовательно, представление неприводимо.

Определение 2.6 Всякий линейный оператор Т : Н Н΄ такой, что Тπ(х)=π΄(х)Т для любого хА, называется оператором сплетающим π и π΄.

Пусть Т : Н Н΄ - оператор, сплетающий π и π΄. Тогда Т* : Н΄ Н является оператором, сплетающим π΄ и π, так как

Т* π΄(х) = (π΄(х)Т)* = (Тπ(х*))* = π(х)Т*

Отсюда получаем, что

                                        Т* Тπ(х)=Т* π΄(х)Т= π(х)Т*Т                                     (2.1.)

Поэтому |T| = (T*T)1/2 перестановочен с π(А). Пусть Т = U|T| - полярное разложение Т. Тогда для любого хА

               Uπ(х)|T| = U|T| π(х)= Тπ(х)= π΄(х)Т=π΄(х)U|T|                        (2.2.)

Если KerT={0}, то |T| (Н) всюду плотно в Н и из (2.2.) следует

                                        Uπ(х) = π΄(х)U                                                    (2.3.)

Если, кроме того, = Н΄, то есть если KerT*={0}, то U является изоморфизмом Н и Н΄  и (2.3.) доказывает что π и π΄ эквивалентны.

Пусть π и π΄ - неприводимые представления *-алгебры А в гильбертовых пространствах Н и Н΄  соответственно. Допустим, что существует ненулевой сплетающий оператор Т : Н Н΄. Тогда из (2.1.) и теоремы 2.6. следует, что Т*Т и ТТ* - скалярны (≠0) и π,  π΄ эквивалентны.

2.4. Конечномерные представления.

Теорема 2.7. Пусть π – конечномерное представление *-алгебры А. Тогда π = π1…..πn , где πi  неприводимы.

Доказательство. Если dimπ = 0 (n=0), то все доказано. Предположим, что dimπ = q и что наше предложение доказано при dimπ<q. Если π неприводимо, то предложение снова доказано. В противном случае π = π΄  π΄΄, причем dimπ΄<q, dimπ΄΄<q, и достаточно применить предположение индукции.

Разложение π = π1…..πn  не единственно. Тем не менее, мы получим некоторую теорему единственности.

Пусть ρ1, ρ2 – два неприводимых подпредставления π. Им отвечают инвариантные подпространства Н1 и Н2. Пусть Р1 и Р2 – проекторы Н на Н1 и Н2. Они коммутируют с π(А). Поэтому ограничение Р2 на Н1 есть оператор, сплетающий ρ1 и ρ2. Следовательно, если Н1 и Н2 не ортогональны, то из пункта 2.3. следует, что ρ1 и ρ2 эквивалентны. Это доказывает, что любое неприводимое подпредставление π эквивалентно одному из πi . Итак, перегруп-
пировав πi , получаем, что π = ν1…..νm, где каждое  νi есть кратное ρiνi΄ неприводимого представления νi΄, и νi΄ попарно эквивалентны. Если ρ неприводимое представление π, то предыдущее рассуждение показывает, что соответствующее инвариантное подпространство Н΄ ортогонально всем инвариантным подпространствам Нi, отвечающих νi, кроме одного. Поэтому Н΄ содержится в одном из Нi. Это доказывает, что каждое пространство Нi определяется однозначно: Нi – это подпространство Н, порожденное пространствами подпредставлений π, эквивалентных νi΄. Таким образом, доказано предложение.

Теорема 2.8. В разложении π = ρ1ν1΄…..ρmνm΄ представления π, (где ν1΄,…, νm΄ неприводимы и неэквивалентны) целые числа ρi и классы представлений νi΄  определяются единственным образом, как и пространства представлений.

2.5. Интегрирование и дезинтегрирование представлений. Напомним определение борелевского пространства.

Определение 2.7. Борелевским пространством называется множество Т, снабженное множеством В подмножеств Т, обладающим следующими свойствами: ТВ, ØВ, В инвариантно относительно счетного объединения, счетного пересечения и перехода к дополнению.

Определение 2.8. Пусть Т1, Т2 борелевские пространства. Отображение f: Т1Т2 называется борелевским, если полный прообраз относительно f любого множества в Т2 есть борелевское множество в Т1.

Дадим несколько вспомогательных определений и утверждений.

Пусть Т – борелевское пространство и μ – положительная мера на Т.

Определение 2.9. μ – измеримое поле гильбертовых пространств на Т есть пара ε = ((H(t))tT, Г), где (H(t))tT – семейство гильбертовых пространств, индексы которых пробегают Т, а Г – множество векторных полей, удовлетворяющее следующим условиям:

(i)      Г – векторное подпространство    Н(t);

(ii)        существует последовательность (х1, х2,…) элементов Г таких, что для любого tT элементы хn(t) образуют последовательность H(t);

(iii)       для любого хГ функция t||x(t)||  μ – измерима;

(iv)       пусть х векторное поле; если для любого yГ функция t(x(t), y(t)) μ – измерима, то хГ.

Пусть ε = ((H(t))tT, Г) μ – измеримое поле гильбертовых пространств на Т. Векторное поле х называется полем с интегрируемым квадратом, если хГ и ||x(t)||2 dμ(t) < +∞.

Если х, y с интегрируемым квадратом, то х+y и λх (λС) – тоже и функция t →(x(t), y(t)) интегрируема; положим

(x, y) = (x(t), y(t)) dμ(t)

Тогда векторные поля с интегрируемым квадратом образуют гильбертово пространство Н, называемое прямым интегралом Н(t) и обозначаемое x(t)dμ(t).

Определение 2.10. Пусть ε = ((H(t))tT, Г) – измеримое поле гильбер-
товых пространств на Т. Пусть для любого tT определен оператор S(t)L(H(t)). Если для любого хT поле tS(t)x(t) измеримо, то tS(t) называется измеримым операторным полем.

Пусть Т – борелевское пространство, μ  - положительная мера на Т, tН(t) - μ  - измеримое поле гильбертовых пространств на Т. Пусть для каждого tT задано представление π(t) *-алгебры А в Н(t): говорят, что tπ(t) есть поле представлений А.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.