скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыЛабораторная работа: Исследование нелинейных систем

            

Проведите качественное исследование системы: оцените возможность возникновения периодических режимов и их устойчивость. Там, где это возможно, запишите выражения для критического коэффициента усиления ЛЧ, при котором в нелинейной системе возникают автоколебания.

Изучите текст программы (файл GB_prog.m) и структуру моделей (файлы GB_mod.mdl и R_Fourie.mdl).

Графический расчет параметров периодических режимов c использованием метода гармонического баланса производится по сценарию, записанному в файле GB_prog.m. Моделирование нелинейной системы осуществляется при помощи файлов GB_prog.m и GB_mod.mdl, а анализ спектрального состава периодического режима на выходе линейной части – при помощи файлов GB_prog.m и R_Fourie.mdl.

Cодержание файла GB_prog.m:

%Исследование нелинейных систем методом гармонического баланса

%Используемые файлы: GB_prog.m, GB_mod.mdl и R_Fourie.mdl.

%Используемые обозначениЯ: НЭ – нелинейный элемент, ЛЧ – линейнаЯ часть.

%Очистка всех переменных в памЯти

clear all

%закрытие всех предыдущих рисунков

set (0,'ShowHiddenHandles', 'on')

delete (get(0,'Children'))

%Задание значениЯ переменной, определЯющей положение переключателЯ

%конфигурации нелинейной части в файле GB_mod.mdl

%1 – НЭ-двухпозиционное реле с гистерезисом

%2 – НЭ-трехпозиционное реле без гистерезиса

%3 – НЭ-люфт

config_nlin = 2;

%Задание значениЯ переменной, определЯющей положение переключателЯ

%конфигурации линейной части в файле GB_mod.mdl

%1 – ЛЧ – Wл1 (p)=k/[(T1*p+1) (T2*p+1) (T3p+1)]

%2 – ЛЧ – Wл2 (p)=k/[(T1*p+1) (T2*p+1) p]

%3 – ЛЧ – Wл3 (p)=[k (T1*p+1)]/[(T2*p‑1)^2 (T3*p+1)^2]

%4 – ЛЧ – Wл4 (p)=[k (T1*p+1)]/[(T2*p‑1) p]

config_lin = 2;

k = 5;

T1 = 0.1;

T2 = 0.2;

T3 = 1;

b = 0.1;

c = 1;

%Графический расчет параметров периодических режимов c использованием

%метода гармонического баланса

%описание линейной части

switch config_lin

case 1,

%начальное значение, шаг и конечное значение частоты (в рад)

w = [0.02:0.01:100];

%комплексный передаточный коэффициент ЛЧ

W_lin = k./ ((T1*j*w+1).* (T2*j*w+1).*(T3*j*w+1));

%определение значениЯ строковой переменной lin

lin = 'Wл1 (p)';

case 2,

%начальное значение, шаг и конечное значение частоты (в рад)

w = [2:0.01:100];

%комплексный передаточный коэффициент ЛЧ

W_lin = k./ ((T1*j*w+1).* (T2*j*w+1).*(j*w));

%определение значениЯ строковой переменной lin

lin = 'Wл2 (p)';

case 3,

%начальное значение, шаг и конечное значение частоты (в рад)

w = [0.01:0.01:300];

%комплексный передаточный коэффициент ЛЧ

W_lin = (k*(T1*j*w+1))./ ((T2*j*w‑1).^2.*(T3*j*w+1).^2);

%определение значениЯ строковой переменной lin

lin = 'Wл3 (p)';

case 4,

%начальное значение, шаг и конечное значение частоты (в рад)

w = [1:0.01:100];

%комплексный передаточный коэффициент ЛЧ

W_lin = (k*(T1*j*w+1))./ ((T2*j*w‑1).*(j*w));

%определение значениЯ строковой переменной lin

lin = 'Wл4 (p)';

end

%описание ЛЧ как частотной характеристики через W_lin(jw)

SYSL = frd (W_lin, w);

%–

%Описание нелинейной части

switch config_nlin

case 1,

%начальное значение, шаг и конечное значение амплитуды на входе НЭ

A = [b:0.01:3.0];

%коэффициенты гармонической линеаризации

q = 2*c/(pi*b).* ((2*b./A).* sqrt (1 – (b./A).^2));

q1 = -2*c/(pi*b).* 2*(b./A).^2;

%определение значениЯ строковой переменной nlin

nlin = '2‑х поз. реле с гист.';

case 2,

%начальное значение, шаг и конечное значение амплитуды на входе НЭ

A = [b+0.0001:0.005:b*sqrt(2)];

A_ = [b*sqrt(2):0.005:3.0];

%коэффициенты гармонической линеаризации

q = (4*c./ (pi*A)).* sqrt (1 – (b./A).^2);

q1 = 0;

q_ = (4*c./ (pi*A_)).* sqrt (1 – (b./A_).^2);

q1_ = 0;

%эквивалентный комплексный передаточный коэффициент W_nlin(jA) НЭ

W_nlin_ = q_ + j*q1_;

%характеристика -1/W_nlin(jA)

S_ = -1./W_nlin_;

%описание НЭ как амплитудной характеристики через -1/W_nlin(jA)

SYSN_ = frd (S_, A_);

%определение значениЯ строковой переменной nlin

nlin = '3‑х поз. реле без гист.';

case 3,

%начальное значение, шаг и конечное значение амплитуды на входе НЭ

A = [b+0.001:0.01:100];

%коэффициенты гармонической линеаризации

alfa = asin (1–2*b./A);

q = (1/pi)*(pi/2+alfa+0.5*sin (2*alfa));

q1 = – (4*b).* (1‑b./A)./ (pi*A);

%определение значениЯ строковой переменной nlin

nlin = 'люфт';

end

%эквивалентный комплексный передаточный коэффициент W_nlin(jA) НЭ

W_nlin = q + j*q1;

%характеристика -1/W_nlin(jA)

S = -1./W_nlin;

%описание НЭ как амплитудной характеристики через -1/W_nlin(jA)

SYSN = frd (S, A);

%–

%ВизуализациЯ

%Построение W_lin(jw) и -1/W_nlin(jA) при помощи plot (общий вид)

figure(1)

gr_W_lin = plot (real(W_lin), imag (W_lin));

set (gr_W_lin, {'Color'}, {'r'});

hold on

gr_S = plot (real(S), imag(S));

set (gr_S, {'Color'}, {'b'});

title(['Расчет гарм. баланса. НЭ – ', nlin, ', b=', num2str(b), ', c=', num2str(c), '; ЛЧ – ',…

lin, ', k=', num2str(k), ', T1=', num2str(T1), ', T2=', num2str(T2),…

', T3=', num2str(T3)])

xlabel ('re(W lin), re(S)');

ylabel ('im(W lin), im(S)');

legend ('W lin(jw)', 'S(jA)', 0);

grid on

%–

%построение W_lin(jw) и -1/W_nlin(jA) при помощи LTI Viewer

if config_nlin == 2

ltiview({'nyquist'}, SYSL, '-b', SYSN, '-r')

ltiview({'nyquist'}, SYSL, '-b', SYSN_, '-r')

else

ltiview({'nyquist'}, SYSL, '-b', SYSN, '-r')

end

%–

%Завершение графического расчета параметров периодических режимов

%c использованием метода гармонического баланса

%====================================================

%^^^^^^^^^^^^^^Моделирование нелинейной системы (НС)^^^^^^^^^^^^^^^^^^^^^

% с определением параметров автоколебаний

%задание времени моделированиЯ

t_end = 15;

%ограничение шага моделированиЯ сверху

step_max = 0.005;

%задание амплитуды сигнала на выходе ЛЧ в начальный момент времени

y0 = 0.5;

%вызов модели

open_system ('GB_mod.mdl');

%запуск модели

sim ('GB_mod');

%считывание фактических параметров моделированиЯ

Max_Step_Size = get_param ('GB_mod', 'MaxStep');

Stop_Time = get_param ('GB_mod', 'StopTime');

%извлечение последнего элемента из векторов vec_period и vec_amp

%(определение установившихсЯ значений периода и амплитуды автоколебаний

%с использованием данных, записанных в рабочую область памЯти)

clc % очистка командного окна

period = vec_period (length(vec_period));

clear vec_period;

amp_kol = vec_amp (length(vec_amp))%вывод в командное окно

clear vec_amp;

%расчет частоты сигнала на выходе ЛЧ (используетсЯ длЯ последующего

%расчета амплитуды гармоник)

frequency = 1/period;

w_kol = 2*pi*frequency %вывод в командное окно

%Построение процесса во времени на выходе ЛЧ

figure(2)

gr = plot (t_and_y(:, 1), t_and_y(:, 2));

set (gr, {'Color'}, {'r'});

title(['Процесс y(t). НЭ – ', nlin, ', b=', num2str(b), ', c=', num2str(c), '; ЛЧ – ',…

lin, ', k=', num2str(k), ', T1=', num2str(T1), ', T2=', num2str(T2),…

', T3=', num2str(T3), ', y0=', num2str(y0)])

xlabel(['t, cек Амп.кол.=', num2str (amp_kol), ', Wкол=', num2str (w_kol), 'c^-1']);

ylabel('y');

grid on

%–

%закрытие модели

%close_system ('GB_mod', 1)

%=====================================================

%^^^^^^^^^^^^^^^^Анализ спектра автоколебательного процесса^^^^^^^^^^^^^^

%вызов программы, определЯющей амплитуды гармоник сигнала на выходе ЛЧ

open_system ('R_Fourie.mdl');

%транслЯциЯ параметров моделированиЯ НС 'GB_mod.mdl' в файл R_Fourie.mdl

set_param ('R_Fourie', 'MaxStep', Max_Step_Size);

set_param ('R_Fourie', 'StopTime', Stop_Time);

%запуск программы, вычислЯющей амплитуды гармоник

sim ('R_Fourie');

%закрытие программы

%close_system ('R_Fourie', 1)

%извлечение последнего элемента из каждого вектора, содержащего амплитуды

%гармоник (определение установившихсЯ значений амплитуд гармоник с

%использованием данных, записанных в рабочую область памЯти)

magn_0=vec_magn_0 (length(vec_magn_0));

clear vec_magn_0;

magn_1=vec_magn_1 (length(vec_magn_1));

clear vec_magn_1;

magn_2=vec_magn_2 (length(vec_magn_2));

clear vec_magn_2;

magn_3=vec_magn_3 (length(vec_magn_3));

clear vec_magn_3;

magn_4=vec_magn_4 (length(vec_magn_4));

clear vec_magn_4;

magn_5=vec_magn_5 (length(vec_magn_5));

clear vec_magn_5;

%Проверка гипотезы фильтра

filtration = magn_1/magn_3

%построение гистограммы

figure(3);

bar([0 1 2 3 4 5], [magn_0 magn_1 magn_2 magn_3 magn_4 magn_5]);

grid on

title(['Гарм. состав y(t). НЭ – ', nlin, ', b=', num2str(b),…

', c=', num2str(c), '; ЛЧ – ', lin, ', k=', num2str(k), ', T1=', num2str(T1),…

', T2=', num2str(T2), ', T3=', num2str(T3)])

xlabel(['Номер гармоники ГФ: A1/A3=', num2str(filtration)]);

ylabel ('Амплитуда гармоники');

Все команды Matlab, использованные при составлении данной программы, описаны в приложении.

В m‑файле задаются значения параметров линейной части и нелинейного элемента, а также начальные условия по выходу линейной части, указывается время моделирования и шаг моделирования.

Для проведения графического расчета параметров периодических режимов m‑файл содержит описания ЛЧ (через комплексный передаточный коэффициент) и нелинейности (через коэффициенты гармонической линеаризации и эквивалентный комплексный передаточный коэффициент). Совместное воспроизведение характеристик Wл(jw) и  осуществляется двумя способами: при помощи команды plot и команды ltiview. Первая позволяет совместно вывести на рисунок указанные характеристики без вывода комплексно-сопряженных характеристик Wл(-jw) и , но не позволяет по точке их пересечения определить частоту и амплитуду периодических режимов. При помощи второй одновременно выводятся все четыре характеристики, но имеется возможность определения частоты и амплитуды по точке пересечения: команда zoom контекстного меню, вызываемого правой клавишей мыши, позволяет увеличить нужную область рисунка, после чего нужно поместить указатель мыши на требуемую характеристику и нажать на ее левую клавишу – на графике появятся отметка и информационное окно, которые можно переместить мышью в точку пересечения. Для случая системы с идеальным трехпозиционным реле предусмотрено раздельное построение характеристики  до и после точки экстремума при помощи двух команд ltiview.

После завершения графического расчета производится вызов и запуск модели нелинейной системы (GB_mod.mdl). По окончании моделирования строится временной процесс y(t) на выходе линейной части, определяются частота и амплитуда автоколебаний (их значения можно увидеть в командном окне и на созданном рисунке).

На этапе анализа спектрального состава периодического режима на выходе линейной части производится вызов и запуск модели (R_Fourie.mdl), определяющей амплитуды гармоник сигнала y(t), записанного в рабочую область памяти, и строится результирующая гистограмма «Номер гармоники – амплитуда гармоники». В командное окно и окно с гистограммой выводится отношение амплитуд первой и третьей гармоник, что позволяет сделать заключение о выполнении / невыполнении гипотезы фильтра.

При составлении моделей в Simulink (GB_mod.mdl и R_Fourie.mdl) используются элементы библиотек Simulink (Math, Linear, Nonlinear, Signals & Systems, Sinks и Sources), Simulink Extras (Additional Linear) и Power System Blockset (Extra Library\Measurements), доступные через Simulink Library Browser (рис. 3.3 – 3.6). В модели нелинейной системы GB_mod.mdl, показанной на рис. 3.3, предусмотрены переключатели конфигурации линейной и нелинейной частей, управление ими осуществляется соответственно через переменные config_lin и config_nlin, значения которых задаются в m‑файле GB_prog.m.

Параметры моделирования должны быть указаны в окне Simulation parameters, доступном через меню Simulation\Simulation parameters окна, в котором открыт mdl‑файл (рис. 3.7, 3.8).

Установку параметров различных функциональных блоков моделей GB_mod.mdl и R_Fourie.mdl поясняют рис. 3.9 – 3.15.

Рис. 3.4. Организация трехпозиционного реле без гистерезиса
(файл GB_mod.mdl)


Подпись: Трехпоз.Подпись: ИПодпись: Рис. 3.3. Схема моделирования нелинейной системы в Simulink (файл GB_mod.mdl)

Рис. 3.5. Подсистема определения периода и амплитуды автоколебаний (файл GB_mod.mdl)

Рис. 3.6. Модель в Simulink, вычисляющая амплитуду гармоник в составе периодического процесса на выходе линейной части (файл R_Fourie.mdl)


Рис. 3.7. Параметры моделирования для файла GB_mod.mdl

Рис. 3.8. Параметры моделирования для файла R_Fourie.mdl

 

а                                                                 б

Рис. 3.9. Параметры блоков в составе трехпозиционного реле без гистерезиса (файл GB_mod.mdl): а – блока Relay1; б – блока Relay2


 

а                                                          б

Рис. 3.10. Параметры нелинейностей (файл GB_mod.mdl): а люфта; б – двухпозиционного реле с гистерезисом

 

а                                                                 б

Рис. 3.11. Параметры блоков линейной части (файл GB_mod.mdl): а – инерционного звена; б – интегрирующего звена

Рис. 3.12. Параметры блока To Workspace (файл GB_mod.mdl)


 

а                                                                         б

Рис. 3.13. Параметры блоков подсистемы определения периода и амплитуды автоколебаний (файл GB_mod.mdl): а – блока ограничения сигнала Saturation2; б – блока памяти Memory1

Рис. 3.14. Параметры блока Fourier (файл R_Fourie.mdl)

Рис. 3.15. Параметры блока From Workspace (файл R_Fourie.mdl)


Выполнение работы

Модернизируйте файл сценария (m‑файл) в соответствии со своим вариантом: установите значения переменных конфигурации, т.е. выберите передаточную функцию линейной части и первую из двух нелинейностей вашего варианта; установите заданные значения параметров ЛЧ и нелинейности.

Запустите m‑файл на исполнение. Зафиксируйте совместно воспроизведенные командой plot частотную характеристику линейной части Wл(-jw) и характеристику нелинейности –1/Wн(jA). По точкам их пересечения определите Ап и wп, используя LTI Viewer.

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.