скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыЛабораторная работа: Исследование нелинейных систем

Рис. 1.7. Настройки блока Relay при моделировании идеального
двухпозиционного реле


Усилитель с ограничением и зоной нечувствительности – это последовательное соединение трех звеньев: Dead Zone, Gain и Saturation (рис. 1.8, 1.9).

Рис. 1.8. Схема моделирования усилителя с ограничением
и зоной нечувствительности

 

а                                                          б

в

Рис. 1.9. Настройки блоков, входящих в состав усилителя с ограничением и зоной нечувствительности: а – блока Dead Zone; б – блока Saturation; в-блока Gain

Трехпозиционное реле без гистерезиса можно организовать при помощи параллельного соединения двух идеальных двухпозиционных реле (рис. 1.10, 1.11).


Рис. 1.10. Схема моделирования трехпозиционного реле

 

а                                                               б

Рис. 1.11. Настройки блоков, входящих в состав трехпозиционного реле: а – блока Relay1; б – блока Relay2

Для организации НЭ «Люфт» необходим блок Backlash (рис. 1.12).

Рис. 1.12. Настройки блока Backlash

Значения текущего модельного времени, а также сигналов на входе и выходе нелинейности следует выводить в рабочую область памяти при помощи блоков To Workspace (из библиотеки Sinks), указав в каждом блоке имя переменной, предназначенной для хранения данных в выбранном формате. По завершении моделирования в Simulink сохраненная информация будет использована при построении графиков в процессе дальнейшего выполнения файла-сценария.

При использовании блока To Workspace для вывода в рабочую область памяти текущего модельного времени для этого блока необходимо сделать следующие настройки:

ü   формат записи (Save format) - Array (массив);

ü   имя массива (Variable name) - t;

ü   количество точек в массиве (Limit data points to last) не ограничивается - inf;

ü   такт работы блока (Simple time) наследуется от предыдущего - (-1);

ü   прореживание массива (Decimation) не осуществляется - 1 (в память записывается значение времени на каждом такте работы блока).

Окно настроек блока показано на рис. 1.13.

Рис. 1.13. Настройки блока To Workspace, отвечающего за вывод в рабочую область памяти текущего модельного времени


Программа работы

Разместить созданные при подготовке файл-сценарий и файл модели в рабочей директории. Открыть TN_prog.m, проверить соответствие записанных в него исходных данных номеру варианта и при помощи переменной config выбрать для моделирования один из нелинейных элементов. Для обеспечения работы генератора в режиме с затуханием выходного сигнала рассчитывать значение коэффициента демпфирования  в соответствии с формулой (1.2). Значение начальной амплитуды сигнала должно превышать значение параметра b2 нелинейности в случае усилителя с ограничением и зоной нечувствительности, 0 – в случае идеального двухпозиционного реле и b – во всех остальных случаях.

Запустить m‑файл на выполнение. В случае безошибочной организации файла-сценария и файла модели будет запущено моделирование в Simulink, а по его завершении построены три результирующих графика (совмещенные зависимости входного и выходного сигналов НЭ от времени и характеристика нелинейности, т.е. зависимость выходного сигнала от значений входного). Наличие на графиках изломов является признаком выбора слишком крупного шага моделирования; в этом случае следует провести повторный эксперимент, уменьшив шаг моделирования.

Скопировать информацию, выведенную в графические окна путем выполнения команды меню «Edit\Copy Figure», после чего сохранить ее при помощи какого-либо приложения, например текстового редактора MS Word.

Установить нулевое значение коэффициента демпфирования и провести 2–3 эксперимента при разной амплитуде гармонического сигнала на выходе генератора (0<A<b, b<A<b2, A>b2 – для усилителя с ограничением и зоной нечувствительности; 0<A<b, A>b – во всех остальных случаях, кроме идеального двухпозиционного реле, для которого подобный эксперимент не требуется). При этом значение времени моделирования должно быть выбрано таким, чтобы на интервале моделирования «укладывалось» 2–3 периода гармонического сигнала. Амплитуда тестового сигнала также не должна быть выбрана чрезмерно большой, чтобы при совмещении графиков временных зависимостей выходной сигнал НЭ не «потерялся» на фоне входного. При выполнении этого пункта следует сохранять только графики временных зависимостей входного и выходного сигналов НЭ.

Повторить пп. 1.4.1 – 1.4.4 для других изучаемых в данной лабораторной работе нелинейностей.

Содержание отчета

Исходные данные лабораторной работы: название работы, цель работы, характеристики исследуемых НЭ, номер варианта и соответствующие ему значения параметров НЭ и генератора.

             Текст файла лабораторной работы и схема моделирования.

             Результаты моделирования каждой нелинейности:

–          график с характеристикой нелинейности (зависимость «выход-вход» НЭ);

–          совмещенные графики зависимостей входного и выходного сигналов НЭ от времени при затухающем тестовом сигнале и гармоническом тестовом сигнале различной амплитуды.

При оформлении результатов моделирования необходимо обратить внимание на информационное сопровождение рисунков: оси должны быть снабжены обозначениями, рисунки иметь подрисуночные надписи. Кроме того, на всех графиках должны быть отмечены характерные точки с указанием числовых значений по осям, т.е. точки, которые связаны с параметрами НЭ (b, b2, c) и амплитудой А тестового сигнала. Также по графикам следует рассчитать величину фазового сдвига между входным и выходным сигналами НЭ.

Объяснение полученных результатов по каждому НЭ. Объяснения требуют такие события, как наличие или отсутствие сигнала на выходе НЭ, ограничение сигнала, различие в амплитудах входного и выходного сигналов НЭ, фазовый сдвиг выходного сигнала НЭ относительно входного. Описывающие эти события числовые данные графиков должны быть подтверждены аналитическим расчетом.

Выводы.

Отчет оформляется на листах формата А4, допускается рукописное, печатное или комбинированное оформление.

Контрольные вопросы

Колебательное звено: передаточная функция, характеристическое уравнение, полюсы, названия и взаимосвязь параметров.

Текст программы: назначение переменной config.

Текст программы: из каких соображений выбирается шаг моделирования и время моделирования?

Модель в Simulink: возможные способы организации генератора.

Модель в Simulink: создание усилителя с ограничением и зоной нечувствительности из стандартных блоков библиотеки Nonlinear.

Модель в Simulink: создание трехпозиционного реле без гистерезиса из стандартных блоков библиотеки Nonlinear. Как организовать трехпозиционное реле с гистерезисом?

2.        Исследование нелинейных систем методом фазовой плоскости

В работе исследуется нелинейная система с нелинейным элементом (идеальным двухпозиционным реле или реле с гистерезисом) и линейной частью второго порядка (двумя интеграторами с коэффициентом усиления или инерционным звеном и интегратором).

На рис. 2.1 представлена структурная схема системы со следующими обозначениями: u – входной сигнал системы; e – сигнал на входе нелинейного элемента (НЭ); g – сигнал на выходе НЭ; x – выходной сигнал системы; y – его производная (скорость изменения); коэффициент обратной связи по скорости (); k – статический передаточный коэффициент; c, b – параметры НЭ;  – передаточная функция линейной части.

Рис. 2.1. Структурная схема системы

Целью работы является изучение процессов в данной системе на фазовой плоскости и во временной области при помощи пакета математического моделирования Matlab и его расширения – пакета моделирования динамических систем Simulink.

Выбор значений параметров нелинейных элементов
и линейной части

Параметры НЭ и линейной части (ЛЧ) следует задавать в соответствии с вариантом, приведённым в табл. 2.1. Номер варианта соответствует номеру бригады.


Таблица 2.1 Значения параметров нелинейного элемента и линейной части

Параметры

Номер варианта

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
c 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
b 0.1 0.2 0.25 0.25 0.3 0.35 0.4 0.5 0.5 0.6 0.8 1 1.2 1.3 1.5
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Подготовительная часть работы

В процессе подготовки к данной лабораторной работе необходимо эскизно с построением линий переключения изобразить фазовые портреты для четырех вариантов конфигурации системы, изображенной на рис. 2.1:

1)         идеальное двухпозиционное реле + линейная часть ;

2)         идеальное двухпозиционное реле + линейная часть ;

3)         двухпозиционное реле с гистерезисом + линейная часть ;

4)         двухпозиционное реле с гистерезисом + линейная часть ;

Для каждой конфигурации проанализировать, при каких  возникает скользящий режим.

Подготовить текст программы (m‑файл) и модель в Simulink (mdl‑файл). Как и в предыдущей работе, удобно связать их друг с другом: переменные, определенные в m‑файле, используются при задании параметров блоков модели, модель запускается на выполнение также командой из m‑файла, а при проведении моделирования в Simulink результаты записываются в рабочую область памяти (Workspace), откуда считываются при построении итоговых графиков командами из m‑файла. Пример m‑файла (FP_prog.m) приведен ниже.

%Исследование нелинейной системы методом фазовой плоскости (файл FP_prog.m)

%Подключаемый файл: FP_mod.mdl.

%Используемые обозначениЯ: НЭ – нелинейный элемент, ЛЧ – линейнаЯ часть.

%Очистка всех переменных в памЯти и закрытие всех предыдущих рисунков

clear all

close all

%Задание значениЯ переменной, определЯющей положение переключателЯ

%конфигурации нелинейной системы в файле FP_mod.mdl

%1 – НЭ-идеальное двухпозиционное реле, ЛЧ – k/p^2

%2 – НЭ-идеальное двухпозиционное реле, ЛЧ – k/[(Tp+1) p]

%3 – НЭ-двухпозиционное реле с гистерезисом, ЛЧ – k/p^2

%4 – НЭ – двухпозиционное реле с гистерезисом, ЛЧ – k/[(Tp+1) p]

config = 1;

%Определение значений строковых переменных nlin и lin

switch config

case 1,

nlin = 'ид. 2‑х поз. реле'; lin = 'k/p^2';

case 2,

nlin = 'ид. 2‑х поз. реле'; lin = 'k/[(Tp+1) p]';

case 3,

nlin = '2‑х поз. реле с гист.'; lin = 'k/p^2';

case 4,

nlin = '2‑х поз. реле с гист.'; lin = 'k/[(Tp+1) p]';

end

%времЯ моделированиЯ, c

t_end = 20;

%ограничение шага моделированиЯ

step_max = 0.005;

%параметры нелинейного элемента

b = 0.1;

c = 1;

%параметры линейной части

k = 1;

T = 0.4;

%коэффициент обратной свЯзи по скорости

alfa = 0.0;

%Начальные условиЯ:

%задаваЯ различные начальные условиЯ длЯ системы, получаем набор

%фазовых траекторий, т.е. фазовый портрет в системе координат Oxy;

%множество начальных условий по х: [x0_min, x0_max];

%множество начальных условий по y: [y0_min, y0_max];

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.