скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Краевые задачи и разностные схемы

Реферат: Краевые задачи и разностные схемы

Реферат з курсу “Введение в численные методы

Тема: “КРАЕВЫЕ ЗАДАЧИ И РАЗНОСТНЫЕ СХЕМЫ”


Содержание

1. Приведение к системе уравнений первого порядка

2. Разностное представление систем дифференциальных уравнений

3. Разностные системы уравнений для краевых задач

4. Краевые задачи второго порядка

5. Разностные схемы для уравнений в частных производных

6. Повышение точности разностных схем

7. Сеточные методы для нестационарных задач

Литература


1. Приведение к системе уравнений первого порядка

Для решения систем дифференциальных уравнений высокого порядка методами конечных разностей в первую очередь возникает потребность преобразования исходной системы в систему дифференциальных уравнений первого порядка с соответствующим образом преобразованными начальными или граничными условиями. И уже далее реализовывать численную процедуру решения.

Преобразование в систему уравнений первого порядка не единственно. Наиболее популярные из них в большинстве своем касаются линейных систем с постоянными или переменными коэффициентами. Основная идея всех методов состоит во введении новых переменных и выполнении замены высших производных этими переменными.

Пусть неоднородное дифференциальное уравнение высокого порядка задано в виде:

где      соответственно i-тая производная искомого решения и ее значение в начальный момент,

 – функция, описывающая внешнее воздействие на динамический объект.

Обозначим первую производную искомой функции новой переменной , первую производную  – следующей переменной: , первую производную  – переменной  и т.д.. Таким образом из исходной системы мы сформируем  дифференциальное уравнение первого порядка:

При таких заменах производных искомой функции  ее n-ная производная оказывается равной первой производной от :

В результате, эквивалентная система дифференциальных уравнений первого порядка примет следующий вид:

В случае, когда правая часть представлена взвешенной суммой функции  и ее производных и в целом дифференциальное уравнение имеет вид

то его преобразование в систему уравнений первого порядка с новыми переменными  осуществляется по следующим формулам:

Такое преобразование сохраняет коэффициенты исходного уравнения неизменными и исключает производные в правой части от . Начальные условия для новых переменных здесь приходится пересчитывать по достаточно сложным соотношениям.

И, наконец, приведем еще один вариант разложения на систему уравнений первого порядка исходного неоднородного уравнения с производными в правой части:

Замена переменных в отличие от предыдущего случая производится без сохранения коэффициентов исходного уравнения:

Производные искомой функции  можно выразить через вновь введенные переменные  путем многократного дифференцирования левой и правой части соотношения для y с подстановкой после каждого дифференцирования производных :

Умножив каждое выражение для  на коэффициенты  и просуммировав правые и левые члены равенств, получим уравнение, которое отличается от исходного лишь коэффициентами при производных в правых частях. Чтобы добиться тождественности, необходимо коэффициенты при соответствующих производных приравнять и разрешить полученную систему уравнений относительно неизвестных .

Система уравнений имеет вид:

В векторно-матричной форме это уравнение и его решение записываются в следующем виде:

где      вектор известных коэффициентов,

 – вектор искомых коэффициентов,

 – соответственно прямая и обратная верхне-треугольные матрицы коэффициентов. Первая из них выглядит так:

.

Обратная матрица удобна при использовании математических пакетов для решения векторно-матричного уравнения. Если , то коэффициенты  легко вычисляются последовательной подстановкой значений , начиная с .

Начальные условия для  вычисляются по выражениям для  следующим образом:

или в векторно-матричной форме:

,

.

2. Разностное представление систем дифференциальных уравнений

Представление системы дифференциальных уравнений первого порядка с начальными условиями

можно заменить системой конечно-разностных уравнений первого порядка с целочисленной независимой переменной i ():

,

погрешность аппроксимации которого пропорциональна сеточному шагу h.

Выше было уже показано, как можно уменьшить погрешность аппроксимации, делая ее пропорциональной . В частности это можно сделать, использовав среднее арифметическое двух разностей первого порядка: вперед” и “ назад”.

При такой замене производной мы получаем систему разностных уравнений, состоящую из разностных уравнений второго порядка, требующих, кроме известного вектора начальных условий , еще один дополнительный вектор :

 .

Дополнительный вектор начальных условий достаточно вычислить по формуле Эйлера. Он и определит дополнительное начальное условие с ошибкой, пропорциональной второй степени h:

Подстановка таких начальных условий в решение сохранит погрешность результатов на уровне . В таком случае говорят, что разностная схема имеет второй порядок точности.

3. Разностные системы уравнений для краевых задач

Исходные дифференциальные уравнения во многих физических и технических применениях решаются для случаев, когда заданы значения искомых функции и/или ее производных в различных точках интервала интегрирования и, в частности - на концах интервала. Такого рода уравнения в обыкновенных производных или системы из таких уравнений называются краевой задачей.

Общим методом решения краевой задачи является преобразование ее в систему алгебраических уравнений относительно множества неизвестных значений искомой функции, выбранных в точках, равномерно расположенных на оси абсцисс, т.е. заданных на сетке известных значений независимой переменной.

Для линейной системы уравнений первого порядка, записанной в матричной форме относительно вектора  как

,

обязательно задается полный набор краевых условий , включающий хотя бы одно значение , или набор комбинаций из значений  и

Обычно задаваемое граничное значение совмещается с тем или иным n-ным сеточным значением независимой переменной. Это позволяет обходиться без преобразования граничных условий к ближайшей точке сетки. Векторы , ,  и матрица  в общем случае приводятся к единичному интервалу изменения независимой переменной с помощью линейного преобразования , в котором  с шагом по оси абсцисс равном . Благодаря этому производные в левых частях единообразно заменяются (M+1)-точечными конечно-разностными выражениями через искомые значения решения:

.

Многоточечные представления производных получаются путем применения существующих соотношений между операторами дифференцирования, конечных разностей и сдвига:

Чтобы выразить значение производной порядка k в m-той точке целочисленного интервала [0, n] через ординаты функции  необходимо выполнить следующие операторные преобразования:

Заменив конечно-разностные операторы  (после приравнивания нулю разностей со степенями выше n) выражениями с оператором сдвига  и вспомнив, что , получим в результате для k-той производной в m-той точке взвешенную сумму из ординат искомой функции:

.

Погрешность аппроксимации дифференциального оператора конечно-разностным оператором для центральной точки (m=n/2) пропорциональна с наименьшим коэффициентом величине  и c наибольшим – для точек конца интервала.

Часто применяемые выражения конечно-разностной аппроксимации производных первого и второго порядков по трем-семи равномерно расположенным точкам приведены ниже в таблицах в виде коэффициентов, стоящих перед соответствующими ординатами функции. В левом верхнем углу таблиц записан общий множитель, а в крайней правой колонке – коэффициенты k1, k2 для формул погрешности.


Трех точечная аппроксимация первой производной

y(0)

y(1)

y(2)

y’(0)

-3 4 -1 2

y’(1)

-1 0 1 -1

y’(2)

1 -4 3 2

Четырех точечная аппроксимация первой производной

-11 18 -9 2 -3

-2 -3 6 -1 1

1 -6 3 2 -1

-2 9 -18 11 3

Пятиточечная аппроксимация первой производной

-25 48 -36 16 -3 12

-3 -10 18 -6 1 -3

1 -8 0 8 -1 2

-1 6 -18 10 3 -3

3 -16 36 -48 25 12

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.