скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Дроби

Итак, в процессе введения и изучения в школе математических понятий полезно:

1) не вводить новых понятий формально; детально конкретизировать новые абстрактные понятия; по возможности применять конкретно-индуктивный метод;

2) вводить понятия наиболее естественным для учащихся путем; по возможности, следует чаще привлекать учащихся к самостоятельному изучению и определению рассматриваемого понятия;

3) мотивировать вводимые понятия, термины, определения; не допускать у учащихся представления о произвольности введения новых понятий;

4) в процессе изучения новых понятий полезно выявить связи нового понятия с уже известными понятиями; указывать на аналогию в характеристике новых понятий и понятий известных;

5) на каждом уроке полезно повторять определения известных учащимся важнейших математических понятий, связанных с понятиями, рассматриваемыми на данном уроке, требуя в то же время не столько запоминания определений понятий наизусть, сколько правильной передачи сущности определения данного понятия;

6) при овладении учащимися теми или иными математическими понятиями строго следить за речью учащихся, требовать четкости, краткости и строгости в формулировках определений. Следует иметь в виду, что «профилактика» ошибок эффективнее их исправления. Заниматься такой профилактикой учителю нужно постоянно.

 

1.3. Понятие дроби

Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис). При измерении оказалось, что отрезок х состоит из трех отрезков, е, и отрезка, который короче отрезка е. В этом случае длина отрезка х не может быть выражена натуральным числом. Однако, если отрезок е разбить на 4 части, то отрезок х окажется состоящим из 14 отрезков, равных четвертой части отрезка е. И тогда, говоря о дине отрезка х, мы должны указать два числа 4 и 14: четвертая часть отрезка е укладывается в отрезке точно 14 раз. Поэтому условились длину отрезка х записывать в виде Е, где Е – длина единичного отрезка е, а символ  называют дробью.

В общем виде понятие дроби определяют так. Пусть даны отрезок х и единичный отрезок е, длина которого Е. Если отрезок х состоит из m отрезков, равных n-ой части отрезка е, то длина отрезка х может быть представлена в виде , где символ  называют дробью.

К записи дроби  числа m и n натуральные, m – называется числителем, n – знаменателем дроби.

Дробь  называется правильной, если ее числитель меньше знаменателя, и неправильной, если ее числитель больше знаменателя или равен ему.

Вернемся к рис., где показано, что четвертая часть отрезка е уложилась в отрезке х точно 14 раз. Очевидно, это не единственный вариант выбора такой части отрезка е, которая укладывается в отрезке х целое число раз. Можно взять восьмую часть отрезка е, тогда отрезок х будет состоять из 28 таких частей и длина его будет выражаться дробью . Можно взять шестнадцатую часть отрезка е, тогда отрезок х будет состоять из 56 таких частей и его длина будет выражаться дробью .

Вообще длина одного и того же отрезка х при заданном единичном отрезке е может выражаться различными дробями, причем, если длина выражена дробью , то она может быть выражена и любой дробью вида , где к – натуральное число.

Теорема. Для того чтобы дроби  и выражали длину одного и того же отрезка, необходимо и достаточно, чтобы выполнялось равенство mg = np

Определение: Две дроби  и  называются равными, если mg = np. Если дроби равны, то пишут =.

Например =, так как 17 х 21 = 119 х 3 = 357, а , потому что 17 х 27 = 459,19 х 23 = 437 и 459 ≠ 437.

Из сформулированных выше теоремы и определения следует, что две дроби равны тогда и только тогда, когда они выражают длину и того же отрезка.

Нам известно, что отношение равенства дробей рефлексивно, симметрично и транзитивно, т.е. является отношением эквивалентности. Теперь, используя определение равных дробей, это можно доказать.

Теорема. Равенство дробей является отношением эквивалентности.

Доказательство: Действительно, равенство дробей рефлексивно: = , так как равенство mn = mn справедливо для любых натуральных числе m и n.

Равенство дробей симметрично: =, то =, так как из mg = np следует, что pn = mg (m,n,p,g ε N).

Оно транзитивно: если  =  и =, то  = .

В самом деле, так как  = , то mg = np, так как  = , то ps = gr. Умножив обе части равенства mg = np на s, а равенство ps = gr на n, получим mgs = nps и nps = grs. Откуда mgs = grs или ms = nr. Последнее равенство означает, что  = . Итак, равенство дробей рефлексивно, симметрично и транзитивно, следовательно оно является отношением эквивалентности.

Из определения равных дробей вытекает основное свойство дроби:

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.

На этом свойстве основанного сокращение дробей и приведение дробей к общему знаменателю.

Сокращение дробей – это замена данной дроби другой, равной данной, но с лишим числителем и знаменателем.

Если числитель и знаменатель дроби одновременно делятся только на единицу, то дробь называют несократимой. Например,  - несократимая дробь, так как ее числитель и знаменатель делятся одновременно только на единицу, т.е. В (5; 17) = 1.

Приведение дробей к общему знаменателю – это замена данных дробей, равными им дробями, имеющими одинаковые знаменатели. Общим знаменателем двух дробей  =  является общее кратное чисел n и g, а наименьшим общим знаменателем – их наименьшее.

 

1.4. Введение и формирования математического понятия дроби на уроках математики

Всякое понятие, в том числе математическое, является абстракцией от множества конкретных объектов, которые описываются им. В понятии отражаются устойчивые свойства изучаемых объектов, явлений. Эти свойства повторяются у всех объектов, которые объединяются понятием. Но каждый реальный объект имеет некоторые другие свойства, присущие только ему. Различие в несущественных свойствах только оттеняет, подчеркивает существенные.

Формирование математических абстракций может привести к формализму в знаниях учащихся, если оперирование ими будет бессодержательно, если за каждой абстракцией ученик не увидит наглядной мысленной картины, т.е. образа. Игнорирование практической деятельности учеников с материальными или материализованными объектами, которые несут наглядное знание и формируют образы, приводит к появлению поверхностных знаний, а иногда и к отсутствию их.

Обыкновенная дробь является, по существу, первой глубокой математической абстракцией, которая встречается в школьном курсе. Пренебрежение учителем содержательной стороной изучаемых понятий, быстрый переход к формальному оперированию дробями без достаточно надежной опоры на наглядность приводят к тому, что слабые, а то и средние ученики не понимают изучаемого материала. Порой за обозначением 3/5 ученик не видит никакого образа. Для такого ученика и операции над дробями превращаются в серию непонятных процедур, последовательность которых ему приходится просто запоминать.

Формированию верного представления о понятии «обыкновенная дробь» и умению пользоваться им способствуют практические работы с материализованными объектами. Ниже приведены некоторые из материалов, по которым целесообразно проводить такую работу.

Осваивая понятие "обыкновенная дробь", ученик должен поупражняться в подсчете числа равных долей, на которые разделено целое, и числа взятых долей. Дроби есть числа, поэтому уже на первом этапе нужно дать ученику возможность сравнивать, пользуясь только наглядностью, полученные дроби с целыми числами, например с 1, и дробь с дробью.

На этом этапе обучения весьма полезны карточки, образцы которых показаны ниже. Карточка 1 - это только вариант индивидуального задания (рис.9).

Рис.9

Именно индивидуального. Каждый ученик получает свою карточку, которая отличается от карточек у других ребят. Это побуждает ученика действовать самостоятельно, а не просто наблюдать манипуляции учителя с моделями, к которым чаще всего сводится «наглядность» при изучении дробей.

В карточке 1 нужно заполнить таблицу, указывая каждую часть, если это подсказывается рисунком, в виде "разных" дробей (1/2 = 3/6). Своеобразной подсказкой являются жирные линии, делящие фигуры. Выполняя предложенные упражнения, ученик осваивает понятие дроби, подмечает основное свойство, подсчитывает дополнение дроби до единицы. Уже на этом этапе он встречается в неявном виде со сложением дробей, с приведением дроби к новому знаменателю.

По карточке учащимся приходится отвечать на следующие вопросы:

Какая часть фигуры (всего в каждой карточке по 8 фигур самых разнообразных очертаний) закрашена штриховкой определенного вида?

Какая часть фигуры закрашена штриховками обоих видов? (Этот вопрос подводит учащихся к сложению дробей, например требуется сложить 6/18 и 3/18 долей фигуры Е)

Какая часть фигуры осталась без штриховки? (Здесь фактически требуется вычесть правильную дробь из 1, например найти, какая часть фигуры С. осталась без штриховки, если заштриховано ее 5/10 частей)

Косой штриховкой закрашены 4/12 доли фигуры О, а прямой штриховкой - 2/12 доли той же фигуры. Какая штриховка занимает больше долей фигуры G? На сколько долей больше занимает в фигуре G косая штриховка, чем прямая? Уравнение дробей друг с другом и вычитание дробей. На сколько частей жирные линии делят фигуру В? Сколько в каждой из этих частей содержится 12-х долей данной фигуры?

Рассмотрите фигуру F, выделите в ней 1/4 долю. Выразите дробь 1/4 другими дробями, руководствуясь фигурой F.

Основное свойство дроби закрепляется по карточке № 2. (рис.10). Она разделена на две части, в каждой из которых демонстрируются три способа деления одного «отрезка» на равные части: на 4 части, на 8 частей и на 16 частей (на 3 части, на 6 частей и на 12 частей). Учащиеся должны записать отсутствующие числители у двух из трех равных дробей. Для этого им придется проделать следующие действия: выделить на рисунке первый отрезок, заданный одной из трех дробей (той, у которой известны и числитель и знаменатель); найти второй отрезок, равный первому (он разделен на то число частей, которое указано знаменателем другой дроби); подсчитать число частей во втором отрезке и записать его в числителе второй дроби; мысленно разделить один из отрезков на то число частей, которое указано знаменателем третьей дроби, и сообщить, сколько потребуется набрать таких частей для третьего отрезка такой же длины, что и первые два. Как видим, такой процесс побуждает учащихся самостоятельно оперировать наглядным материалом и постепенно в ходе этого оперирования вырабатывать формальное правило.

Упражнения по карточкам № 3 и 4 взаимно обратны (рис.11). Они представляют новый аспект освоения понятия дроби. Выполнение предложенных упражнений сопровождается моторными действиями, которые лучше запоминаются учениками с кинестетическим (двигательным) типом мышления.

Отметим, что в карточке № 3 исходные фигуры намеренно усложнены. Таким образом, обеспечивается закрепление в сознании учащихся не геометрического образа, а последовательности арифметических действий над числом, получающимся в результате подсчета равных элементов фигуры. Аналогично и в карточке №4 в ответах не получается "хороший" прямоугольник. Учащимся приходится постепенно переходить от манипуляций с геометрическими объектами к арифметическим действиям. Так, если первое задание учащиеся могут выполнить чисто геометрически (приставив к фигуре, обозначающей дробь 1/2, еще точно такую же фигуру), то в случае с дробью 2/5 так поступить уже нельзя. Приходится сначала поделить данную фигуру на 2 части. В следующем задании (дробь 3/4) такое деление не удается осуществить «безболезненно», т.е. наглядным образом. Приходится начинать с подсчета числа равных квадратиков данной фигуры.

Для усвоения способов нахождения дроби от числа и числа по его дроби ученикам вновь предлагается задание по наглядному материалу, т.е. по карточкам № 5 и 6. (рис.12) Выполняя эти задания, ребята обращаются к рисункам. При этом они отчетливо осознают суть операций нахождения дроби от числа и числа по его дроби, поскольку с этими операциями связываются наглядные картины - образы. Важно лишь в заданиях предложить ученикам достаточное количество образных вариаций, не одну-две, как часто бывает на уроках, а пять-шесть. На индивидуальной карточке такие задания предъявить легко, поскольку ученик работает один, не снижал темп изучения материала всем классом. Конечно, практика оперирования дробями не должна ограничиваться приведенными упражнениями с наглядным материалом. Учитель должен использовать и обычные задания из учебных пособий. Делать это он может дифференцированно, задерживал одних на карточках и стимулируя других более сложными упражнениями.

При изучении сложения дробей учащимся необходимо предоставить возможность поработать с наглядным материалом, отражающим свойства дробей. В данном случае используются задания, схожие с теми, что приведены в карточке № 7. (рис.13). Здесь тонкие линии помогают понять, каким будет наименьший общий знаменатель и что он наглядно означает. Подсказывается и то, какой будет дробь, приведенная к новому знаменателю. Попрактиковавшись в выполнении таких упражнений, ученик сможет наглядно оценивать результат сложения двух дробей, делая необходимые прикидки. Для слабого ученика такая работа полна смысла: опираясь на нее, можно вводить алгоритм сложения дробей с разными знаменателями, который теперь не будет представляться ребенку непонятной процедурой. Параллельно со сложением на наглядном уровне изучается и операция вычитания дробей. По карточке № 7 Целесообразно предложить школьникам найти разность дробей:

 и т.д.

Почти традиционно правило умножения обыкновенных дробей объясняют на примере нахождения площади прямоугольника, длины сторон которого выражаются данными дробями. Получив с одного примера "заветное" правило, начинают эксплуатировать его, находя произведения дробей. Поспешность и формализм проявляются затем на качестве знаний.

Страницы: 1, 2, 3, 4, 5, 6


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.