скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Пресс для правки коленчатого вала с гидравлическим приводом

Авторами этого изобретения являются: Г.А. Боровиков, Д.Н. Панкратов.

Изобретение относится к обработке металлов давлением и касается правки коленчатых валов двигателей внутреннего сгорания автомобилей различных марок.

Цель изобретения – эффективность, универсальность и простота эксплуатации.

Пресс состоит (рис. 1) из сварной станины с направляющими для двух пар тяг с перекладинами и установочных призм, силового механизма, в основу конструкции которого положен принцип червячно-винтового редуктора с ручным приводом и клинового механизма, а так же измерительно-контрольного узла.

Конструкция червячно-винтового редуктора состоит из корпуса, в котором расположены червячное колесо с винтовой втулкой. Червяк, изготовленный за одно целое с валом, установленным на двух шариковых радиально-упорных подшипниках по схеме «в распор». Венец червячного колеса конструктивно должен быть изготовлен методом литья в форму с предварительно установленной в нее стальной винтовой втулкой. Опорами винтовой втулки червячного колеса являются роликовые радиально-упорные подшипники. Получение необходимого натяга в этих подшипниках, а также регулирование осевого положения червячного колеса относительно оси червяка обеспечивается двумя кольцами-компенсаторами, расположенными между наружными кольцами роликовых подшипников и упорными фланцами.

Рисунок 2. Пресс для правки коленчатых валов.

Для правки коленчатый вал устанавливают крайними опорными шейками на двух призмах и закрепляют двумя перекладинами при помощи гаек. Затем, вращая рукоятку червячного винта приводят во вращение червячное колесо, в котором в осевом направлении перемешается винт с клином, по наклонной поверхности которого перемещается вверх ролик с направляющей штока, который и осуществляет давление на среднюю коренную опорную шейку коленчатого вала, изгибая при этом его на величину до 3 мм. После этого снимают давление штока на коленчатый вал и производят контроль величины изгиба измерительным блоком с точностью 0,01 мм. Подобные переходы операции правки коленчатого вала осуществляют до тех пор, пока величина изгиба по средней опорной шейке будет не более 0.02 мм.

В качестве прототипа, для дальнейшего использования в конструкционной части дипломного проекта, принимаем конструкцию пресса для правки коленчатых валов двигателей автомобилей авторами изобретения которого являются: Г.А. Боровиков, Д.Н. Панкратов и пресс СР 150 компании «AZspa». Данные конструкции считаю самыми оптимальными, так как они обладают эффективностью, универсальностью и простотой эксплуатации и конструкции.


III. Конструкторская часть

3. Разработка элементов конструкции пресса для правки коленчатых валов

3.1 Назначение, описание конструкции, принцип работы и техническая характеристика пресса

Пресс состоит (рис. 3) из сварной станины с двумя парами тяг, которые можно передвигать относительно оси коленчатого вала, что позволит править коленчатые валы различных автомобилей. В основе конструкции лежит принцип передачи усилия шейки коленчатого вала от гидроцилиндра через клиновый механизм.

Для правки, коленчатый вал устанавливают крайними опорными шейками на крепление и фиксируют при помощи гаек. При включении станка, гидроцилиндр начинает поступательное движение вдоль оси направляющей приводя в действие клиновый механизм, по наклонной поверхности которого перемещается вверх шток, который и осуществляет давление на среднюю коренную опорную шейку коленчатого вала, изгибая при этом его на величину до 5 мм. После этого снимают давление штока на коленчатый вал и производят контроль величины изгиба измерительным блоком с точностью 0,01 мм. Подобные переходы операции правки коленчатого вала осуществляют до тех пор, пока величина изгиба по средней опорной шейке будет не более 0.02 мм.

Рисунок 3. Пресс для правки коленчатых валов.


3.2 Расчет клинового механизма

“А” - Клин, “Б - Ползун, “В”- Основание.

Рисунок 4. Клиновый механизм.

Сила действующая со стороны клина на шейку коленчатого вала равна:

, (32)

где  - угол трения скольжения на поверхности клина.

а  - угол трения скольжения на основании “В” (рисунок 4).

– угол клина.

Исходное усилие:* 

3.3 Расчет на смятие коренной шейки коленчатого вала и штока

Коленчатый вал выполнен из Стали 50Г с закалкой с охлаждением в воде:


 (33)

Находим площадь смятия для шейки:

 (34)

Отсюда по формуле (34) находим:

что значительно меньше допустимого [σсм] = 4100 кг/см2.

Шток выполнен из Стали 45 с закалкой с охлаждением в воде до

HRC 48:

Находим площадь смятия для штока:

 (35)

Отсюда находим:


что меньше допустимого [σсм] = 6000 кг/см2.

3.4 Расчет направляющих скольжения

Исходные данные (рисунок 5): ширина рабочих граней

расстояние между серединами граней длина стола расстояния

коэффициент трениясил  

сила тяжести подвижных частей

Рисунок 5. Направляющая.

Уравнения равновесия подвижного узла:

 (36)


Из первых четырех уравнений находим реакции граней направляющих и тяговую силу:

*

Определяем средние давления на направляющих:

 (37)

 (38)

Максимальные давления могут быть определены зная координаты  равнодействующих реакций. Для их определения используется два последних уравнения равновесия стола и дополнительное уравнение перемещений, являющихся результатом деформирования поверхностей рабочих граней. Это уравнение следует из предположения, что момент внешних сил относительно оси Y:

 (39)

равный моменту реакций направляющих относительно той же оси


 (40)

распределяется между направляющими пропорционально их жесткости, которая сама пропорциональна их ширине. Следовательно, уравнение перемещений имеет вид:

  (41)

Теперь находим координаты :

 (42)

 (43)

Максимальное давления на направляющие определяют по зависимостям:

;  (44)

что меньше допустимого 2,5-3 МПа.

Расчет направляющих на жесткость включает определение контактных деформаций их рабочих граней в предположении, что они пропорциональны давлениям на гранях:

 (45)

3.5 Расчет силового цилиндра

Силовой цилиндр изготовляется из толстостенной бесшовной стальной трубы (выполненной из Стали 45 с закалкой с охлаждением в воде до HRC 48) (рисунок 6.).

Величину давления выбираем в зависимости от требуемого тягового усилия [8]:

Так как необходимое усилие Р = 100 кН , то принимаем значение давления р = 60 н/м2.

Подобрав значение р ,определяем площадь поршня и диаметр цилиндра:

;  (46)

где F- площадь поршня


Выбираем ближайшее большее значение диаметра цилиндра из установленного ряда [9]: D=0.16 м.

Рисунок 6. Гидроцилиндр.

1-корпус, 2-поршень, 3- крышка.

Диаметр штока определяем в зависимости от заданного соотношения между скоростями прямого и обратного ходов поршня с учетом прочности и устойчивости.

Для обычных цилиндров диаметр штока вычисляется по уравнению:

 (47)

Принимая  и решая это уравнение относительно d, получим

Стенки цилиндра проверяют на прочность (Па)


 (48)

что меньше допустимого

3.6 Определение параметров насоса

Основными параметрами насоса являются производительность и давление. При определении потребной производительности исходят из наибольшей заданной скорости поршня .

Согласно уравнению ,

 (49)

Найденное количество масла увеличивают на 15—20%, учитывая неизбежные утечки в цилиндре, клапанах, трубопроводах и т.д.

Таким образом, искомая производительность насоса

Для упрощения расчетов при определении давления, развиваемого насосом, при подборе гидроаппаратуры и расчете трубопроводов исходят из наибольшего давления в полости цилиндра со стороны штока, т. е. принимают

 (50)

Мощность насоса определяют по формуле

 (51)

3.7 Определение размеров трубопроводов

Внутренний диаметр трубы вычисляют по формуле

 (52)

где Qн расход в м3/сек; v —скорости движения масла в трубе в м/сек. Скорость движения масла в системе при расчете принимают для всасывающих трубопроводов 1,5—2 м/сек, для нагнетающих 3,5 м/сек и для мест сужения на коротких участках до 5,5 м/сек.

Толщина стенки трубы

 (53)

где р — наибольшее давление в н/м

допускаемое напряженно при растяжении. Для стальных труб [σ]р = 400 * 105 н/м2

3.8 Выбор масла

Основной характеристикой для выбора масла является его вязкость. Ее величина зависит от рабочего давления. При давлении р > 100*105 н/м2 v = (1-2) * 10 4 м2/сек. Такой вязкостью обладает масло «Турбинное 22» по ГОСТу 32—53 [v = (0,17- 2) * 104 м2/сек], которое применяют также для гидроприводов вращательного движения и при меньших давлениях.


IV Безопасность технологического процесса

4 Разработка мероприятий по обеспечению безопасности выполнения операций технологического процесса восстановления коленчатого вала

Технологический процесс восстановления коленчатых валов включает в себя ряд неблагоприятных, для исполнителей работ, факторов. Опасности, имеющие место на рабочих местах, подразделяются на импульсные и аккумулятивные.

Источники импульсных опасностей: подвижные массы, потоки воздуха, газов и жидкостей, незаземленные источники электрической энергии, неправильное размещение оборудования на рабочем месте. Импульсная опасность, приводящая к травме, мгновенно реализуется в случайные моменты времени и может быть представлена дискретной, случайной функцией производственного процесса. Источниками аккумулятивных опасностей: повышенный шум, вибрация, загрязненность воздушной среды газами и пара-ми. В результате действия этих факторов организм человека переутомляется, нарушается координация движений, притупляется реакция организма на внешние раздражители. Аккумулятивная опасность реализуется на протяжении всего производственного процесса, представляя его непрерывную функцию, и приводит к повышенному утомлению и заболеваниям.

4.1 Анализ опасных и вредных производственных факторов слесарно-механического участка ГУП СПАТП-4

Любое производство связано с наличием тех или иных вредных факторов. Для поддержания здоровья рабочих в нормальном состоянии необходимо выполнять и придерживаться технических, санитарно-гигиенических мероприятий, направленных на создание безопасных высокопроизводительных условий труда.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.