скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Автоматическая система регулирования с П-регулятором

Далее находим сумму квадратов отклонений:

Динамическая модель объекта первого порядка без запаздывания является наименее точной, поэтому ее применение не целесообразно при моделировании динамики объекта. Ниже приведен проверочный расчет динамической модели объекта первого порядка без запаздыванием и модели второго порядка без запаздыванием на ЭВМ в системе MathCad.


 

 

2.3 Модель объекта первого порядка с запаздыванием

Динамическая модель первого порядка с запаздыванием представляет собой неоднородное дифференциальное уравнение первого порядка:

                            (2.4)

где    T - постоянная времени объекта;

k - коэффициент передачи при 50% номинального режима;

 - время запаздывания.

Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:

                      (2.5)

где    y0=0 - начальное состояние выхода объекта;

k.x=yуст.=10 - установившееся состояние выхода объекта.

Проведем преобразования, аналогичные модели без запаздывания

или запишем в виде системы :

                              (2.6)

где    берется из табл. 7.

Так как ,  и , то все уравнения содержащие эти элементы в расчете участвовать не будут.

Решим систему (2.6) методом наименьших квадратов. Составим матрицы:

- искомых величин:

- правой части системы:

- левой части системы:

- произведение

- произведение

Таким образом получили матричное уравнение:

Находим главный определитель:

Подставляя матрицу  поочередно в первый и второй столбец матрицы , находим вспомогательные определители:

Находим постоянную времени и время задержки:

Таким образом динамическая характеристика первого порядка с запаздыванием будет иметь вид:

Вычислим аналитические значения функции, их отклонения от экспериментальных значений, а также квадраты отклонений, причем значения функции при  учитывать не будем. Результаты сведем в табл. 8.

Таблица 8

Результаты расчета

i 1 2 3 4 5 6 7 8 9 10

yi

0 0 0.5 0,71 0,8 0,91 0,98 0,99 0,995 1

yiанал

0 0 0.199 0.565 0.764 0.872 0.93 0.962 0.98 0.989

yi

0 0 0.301 0.145 0.036 0.038 0.05 0.028 0.015 0.011

0 0 0.090493 0.020928 0.001291 0.001448 0.002451 0.000769 0.00024 0.000124

Далее находим сумму квадратов отклонений:

.

Так как сумма квадратов отклонений у модели с запаздыванием меньше, чем у модели без запаздывания, то ее использование позволяет более точно описывать протекание переходного процесса.

Расчет на ЭВМ моделей более высоких порядков показывает, что наименьшее значение суммы квадратов отклонений будет у модели второго порядка. Поэтому в дальнейших расчетах будем выполнять все действия именно для модели второго порядка.

Ниже приведен проверочный расчет динамической модели объекта первого порядка с запаздыванием и модели второго порядка с запаздыванием на ЭВМ в системе MathCad.






3.         Построение математической модели

Передаточная характеристика объекта представляет собой отношение выходной величины к входной величине.

Передаточная характеристика объекта второго порядка с запаздыванием отличается от характеристики первого порядка наличием в знаменателе дроби квадрата суммы:

После подстановки известных численных значений и всех преобразований, получим:

Приведем полученное выражение к нормальной системе дифференциальных уравнений первого порядка и построим математическую модель объекта на ЭВМ в системе MathCad.



4.         Аналитическое решение

Для отыскания аналитического решения решим характеристическое уравнение:

0,931 р2 + 1,93 р + 1 = 0                                    (4.1)

 p1 = -1,781; p2 = - 0,290 - корни характеристического уравнения.

Ввиду того, что корни характеристического уравнения кратные подставим их в выражение вида:

u(t) = kx . [1 – [1 + p . (t – τ) ] . e p(t – τ) ]            (4.2)

где к – коэффициент передачи при 50% номинального режима

р – корни характеристического уравнения (4.3)

t – соответствующий момент времени

τ – время запаздывания

Подставляя соответствующие значения к, р, t, τ получим график переходного процесса в объекте.

Ввиду сложности расчеты производятся на ПЭВМ (см. распечатку)


5.         Частотные характеристики

Частотные характеристики объекта связаны с его передаточной функцией следующим образом:

где к = к (50%) = 0.428- коэффициент передачи при 50%:

Т = 0.965- постоянная времени:

t = 0.715- время запаздывания.

е-τp = cos(w . t) - j . sin(w . t).

Заменив, в выражении для объекта второго порядка величину p на мнимую величину jw, получим комплексную функцию W(jw).

Преобразовав выражение (4.1) получим, что:


Обозначим в формуле (5.2) :

- Вещественная частотная

характеристика системы

 - мнимая частотная

частотная характеристика системы


Подставив R(w) и I(w) в уравнение (5.2):

W(jw) = R(w) + j .I(w)

Составим соотношения, связывающие между собой частотные характеристики :

где А(w) - амплитудно-частотная характеристика

L(w) - логарифмическая амплитудно-частотная характеристика.

F(w) - фазочастотная характеристика

По формулам (5.3) - (5.5) находим значения для построения частотных характеристик. Эти значения сведены в таблицу 5.1 стр. 30.

Ниже приведен расчет частотных характеристик объекта на ЭВМ в системе MathCAD . Расчет произведен в диапазоне частот 0...2 c-1 для 100 точек. Также представлены графики при  следующих характеристик:

- амплитудно-частотной;

- логарифмической амплитудно-частотной;

- фазо-частотной;

- амплитудно-фазо-частотной.



 

Расчет расширенных частотных характеристик

При расчете расширенных частотных характеристик вместо замены  производят замену , где m=0,221 - степень колебательности системы. Введем обозначение:


где

Далее, аналогично обычным частотным характеристикам, задавшись рядом частот, подаваемых на вход объекта, производим расчет расширенной амплитудно-частотной характеристики по формуле:

Затем рассчитываем расширенную фазо-частотную характеристику по формуле:

.

Ниже приведен расчет расширенных частотных характеристик объекта на ЭВМ в системе MathCAD . Расчет произведен в диапазоне частот 0...2 c-1 для 100 точек. Также представлены графики при  следующих характеристик:

- расширенной амплитудно-частотной;

- расширенной амплитудно-фазо-частотной.



6.         Выбор и расчет параметров настройки регуляторов

Автоматические регуляторы по своим динамическим свойствам подразделяются на линейные и нелинейные. При проектировании наиболее часто применяемых линейных регуляторов используют:

-          пропорциональный регулятор (П-регулятор);

-          интегральный регулятор (И-регулятор);

-          пропорционально-интегральный регулятор (ПИ-регулятор);

-          дифференциальный регулятор (Д-регулятор);

-          пропорционально-дифференциальный регулятор (ПД-регулятор);

-          пропорционально-интегро-дифференциальный регулятор (ПИД-регулятор).

Требования, предъявляемые к регулятору, обусловлены требованиями ко всей системе регулирования: в обеспечении устойчивости замкнутой системы. При проектировании систем стремятся обеспечить их устойчивость с некоторой гарантией, так чтобы изменение параметров в некоторых пределах не могло привести к неустойчивости. Для этой цели используются понятия запасов устойчивости систем автоматического регулирования, вводимых на основе частотного критерия Найквиста:

где  - передаточная функция объекта регулирования;

 - передаточная функция регулятора.

6.1 Расчет П-регулятора

Передаточная характеристика П-регулятора имеет вид:


w

R0

I0

j0

Q0

0 0.428 0 0 0.183 -2.336 3.142
0.5 0.099 -0.438 -1.348 0.202 -0.492 1.794
1 -0.257 -0.196 -2.489 0.105 2.456 0.653
1.5 -0.208 0.041 -3.336 0.045 4.627 -0.194
2 -0.095 0.109 -3.994 0.021 4.545 -0.852

6.2 Расчет И-регулятора

Передаточная характеристика И-регулятора имеет вид:

w

0 0.428 0 0
0.5 0.099 -0.438 0.432
1 -0.257 -0.196 0.602
1.5 -0.208 0.041 -1.025
2 -0.095 0.109 -4.291

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.