скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Нервная регуляция кроветворения

продолжение таблицы 4

костный мозг

миелокариоциты,тыс/мкл|200                                    180                            -                                    100

миелобласты,%                            |-                                0.1                             0.25                             1.0

промиелоциты,%                          |1.5                            1.2                             1.0                                2.6

миелоциты:                                    |

нейтрофильные,%                   |2.5                            3.0                             1.25                             1.0

эозинофильные,%                   |1.5                            0.7                             0.75                             0.4

метамиелоциты:                           |

нейтрофильные,%                   |6.5                            13.0                           3.0                                10.6

эозинофильные,%                   |0.75                          0.7                             0.25                             1.2

палочкоядерные:                         |

нейтрофилы,%                         |29.0                          30.8                           28.0                             20.4

эозинофилы,%                         |1.75                          1.5                             1.5                                1.6

сегментоядерные:                        |

нейтрофилы,%                         |16.5                          8.0                             16.0                             15.8

эозинофилы,%                         |0.25                          0.5                             -                                    0.2

базофилы,%                                   |0.75                          -                                 1.0                                -

лимфоциты,%                                |1.25                          1.0                             0.5                                1.0

моноциты,%                                   |0.75                          1.0                             0.5                                0.2

проэритробласты,%                    |0.25                          0.1                             0.25                             0.6

эритробласты,%                           |32.75                       25.3                           40.25                           30.8

ретикулярные клетки,%             |1.5                            6.8                             4.0                                6.0

клетки Феррата,%                        |1.0                            2.5                             0.5                                2.0

плазматические клетки,%1.25        3.7          1.0           4.0

мегакариоциты         |4.0         11.0         2.0           9.0

индекс лейко/эритро   |1.9         2.4          1.3           1.7

продолжение таблицы 4

нейтрофилограмма                |

----------------- |

миелоциты,%                                 |7.5                            15.5                           4.5                                8.5

метамиелоциты,%                        |18.0                          15.5                           8.5                                17.0

палочкоядерные,%                      |49.0                          42.5                           39.0                             33.0

сегментоядерные,%                     |25.5                          26.5                           48.0                             41.5

|

эритробластограмма |

------------------ |

проэритробласты,%                    |1.0                            2.0                             1.0                                1.0

эритробласты:                              |

базофильные,%                     |26.0                          22.0                           28.0                             14.0

полихроматофильные,%45.0                              28.0                           40.0                             46.0

оксифильные,%                     |28.0                          48.0                           31.0                             39.0

[ 1 (стр.531)]

резкое возрастание числа ортохромных эритробластов (3 порядка).

Все это позволяет думать об активации эритропоэза в смысле интен­сификации созревания (гемоглобинизация) и выхода элементов красной крови в периферическое русло. Общее число лейкоцитов оставалось нормальным. Вместе с тем наблюдалась абсолютная  нейтропения со сдвигом влево. Данные исследования гемограммы и миелограммы свиде­тельствуют о дегенеративном характере созревания нейтрофилов и сохранности фазы выхода зрелых гранулоцитов в периферическую кровь.

Сравнительное изучение миелограммы обнаруживает, кроме того, отчетливое увеличение процентного содержания ретикулярных, а так­же плазматических клеток - с 3,75% до 13%. В норме, по данным

Г.А.Ряжкина(1956) количество их у собак колеблется от 0,5% до 7,4% .

Таким образом, одновременное исследование периферической кро­ви и стернальных пунктатов костного мозга позволило установить преимущественно истинный характер гематологический сдвигов, наблю­даемых в процессе выработки условного рефлекса. Вместе с тем, ис­следование костного мозга обнаружило большое разнообразие и глуби­ну гематологических изменений,что свидетельствует о высокой реак­тивности кроветворных органов.

Есть основания полагать,что указанные изменения явились ре­зультатом воздействий на нервную систему животного и тесно связаны с преобладанием процессов воздуждения в ЦНС.

В правильности такого предположения убеждают опыты с угаса­нием условного рефлекса. В опытах на 2-х собаках наблюдалось по­степенное угасание условного лейкоцитарного рефлекса при многократ­ном изолированном применении звука метронома без подкрепления.

7. ВЛИЯНИЕ БОЛЕВЫХ РАЗДРАЖЕНИЙ

НА СИСТЕМУ КРОВИ.

Современная физиология оасполагает достаточным количеством фактов, позволяющих рассматривать ответную реакцию организма на травму и болевое раздражение как на своеобразный рефлекс, состоя­щий из нервных и гуморальных звеньев (Г.И.Кассиль, 1969).

Всеобъемлющий характер возникающих при этом изменений, охва­тывающих как анимальные, так и вегетативные функции, служит приме­ром целостной организации организма, возглавляемой деятельностью центральной нервной системы. Стрессовая болевая реакция лишь ус­ловно, в плане традиционного гуморализма H.Selye, может быть наз­вана гуморальной. В действительности же в формировании ответа на болевое раздражение ведущая роль принадлежит ЦНС. Считают, что в этой реакции принимает участие гипоталамус, ретикулярная формация и кора больших полушарий мозга.

Изучению различных конечных эффектов болевых раздражений по­священы обзорные работы С.М.Дионесова (1958,1963) и других. В них приводится обширный материал о влиянии болевых раздражений на дея­тельность различных органов и систем организма. Система крови тоже вовлекается в ответную реакцию организма на болевое раздражение. По наблюдениям А.М.Пеховича (1957,1958) кратковременная травмати­зация седалищного нерва у собак и других экспериментальных живот­ных вызывает стойкие изменения красной крови.

Эритроцитоз относится к числу наиболее постоянных симптомов болевой реакции. Полицитемию при болевом раздражении кожи у различ­ных лабораторных животных наблюдали Э.С.Андриасян (1945) и другие. В некоторых случаях увеличение концентрации эритроцитов в перифе­рической крови может быть весьма значительным. Эритроцитоз возни­кает в первые же минуты после болевого раздражения и достигает максимума к 15-30 минуте. Однако продолжительность эритроцитарной реакции в зависимости от характера болевого воздействия, вида жи­вотного и других конкретных условий может колебаться в широких пределах. Кроме того, повышается содержаниет гемоглобина в перифе­рической крови (Э.С.Андриасян,1945). Длительность и величина боле­вой эритроцитарной реакции зависят, по-видимому, от многих причин и связаны с динамикой целостной защитной реакции, с ее соматичес­кими и вегетативными проявлениями. Повышение концентрации эритро­цитов и гемоглобина обеспечивает более высокую потребность в кис­лороде. Изучая механизмы этого явления в опытах на собаках после спленэктомии, ряд авторов пришли к выводу, что эритроцитоз при бо­ли и эмоциональном возбуждении животных происходит вследствие со­кращения селезенки и выброса депонированных эритроцитов в циркули­рующую кровь. Это полностью согласуется с известными фактами о со­кращении селезенки в подобных случаях. Однако данный механизм по

мнению ряда авторов (В.В.Кравцов,1960, Nice & Katz,1934) не может

быть признан единственно возможным. Nice & Katz отметили факт сгу­щения крови при ноцицептивных раздражениях кожи у кроликов. При почти неизменном общем объеме крови они наблюдали уменьшение плаз­матического и уменьшение глобулярного объема. По мнению авторов одной из причин гемоконцентрации в данном случае является депони­рование плазмы в портальной системе, капиллярах и венах брюшной полости.  Ретикулоцитоз при острых болевых раздражениях  (М.И.Уль­янов, 1962, 1966) говорит о поступлении эритроцитарных резервов из костно-мозговых депо. Следовательно, механизм "болевого" эрит­роцитоза представляется значительно более сложным, что вытекает из простого сопоставления уже известных данных.

Длительное ноцицептивное воздействие, вызванное хроническим раздражением седалищного нерва или чувствительных корешков спинно­го мозга у животных сопровождается достаточно стойкими изменения­ми содержания эритроцитов и гемоглобина (В.В.Кравцов,1960). При этом количество эритроцитов в первые месяцы после операции дости­гает 7х10   - 8х10    в 1мкл крови. Соответственно увеличивается и содержание гемоглобина. Однако, начиная со второго месяца кон­центрация гемоглобина и цветной показатель постепенно снижаются. В этот период у собак отмечается ретикулоцитоз и сдвиг ретикулоци­тарной формулы влево.

Экспериментальные данные свидетельствуют о том, что под влия­нием ноцицептивных воздействий (острых и хронических) наряду с ко­личественными сдвигами возникают также и качественные изменения красной крови, обусловленные, по-видимому, нарушениями эритропоэза.

И.В.Ильинская (1955) наблюдала угнетение пролиферации и замедление созревания эритробластов при электрическом раздражении седалищного нерва у кроликов.

Кроме того, под влиянием болевых раздражений возникают слож­ные изменения в лейкоцитарном составе крови, что связано с высо­кой лабильностью лейкоцитарного ростка крови и с той большой ролью, которую играют лейкоциты в защитных реакциях организма. В большин­стве случаев болевые воздействия вызывают развитие лейкоцитоза. Это было продемонстрировано в исследованиях на разных лаборатор­ных животных: собаках, крысах, кроликах, морских свинках и т.д.

Чаще всего производилось раздражение поверхности кожи или обнаженного нерва электрическим током. Также применялась методика

микроожога или механического воздействия на кожу. Раздражение, как

правило, было кратковременным (секунды, минуты) и в большинстве

случаев достаточно сильным, так как при этом наблюдалось общее

двигательное возбуждение животных. В пробах крови обычно подсчи­тывали общее количество лейкоцитов, реже - лейкоцитарную формулу. Обобщая данные можно сказать, что колебания лейкоцитов при болевых раздражениях характеризуются меньшей закономерностью, чем измене­ния эритроцитарного состава крови.

Наряду с общим числом лейкоцитов под влиянием болевых стиму­ляций изменяется также и лейкоцитарная формула. Экспериментальные исследования и клинические наблюдения указывают на то, что при этом имеют место нейтрофилез, нейтрофильный сдвиг влево, лимфопе­ния, эозинопения (М.И.Ульянов,1962-1968). Лейкоцитоз при коцицеп­тивных воздействиях чаще возникает вследствие увеличения абсолют­ного числа нейтрофилов, что сопровождается омоложением нейтрофиль­ного состава крови и увеличением числа палочкоядерных и юных форм. По наблюдениям Эолян Р.О. и соавторов (1954) интенсивные болевые воздействия могут вызвать более резкий сдвиг влево плоть до миело­цитов.

Общий принцип тренировки вегетативных реакций, вероятно, и здесь остается в силе, имется лишь отдельные указания на измене­ние динамики лейкоцитарных реакций при повторных раздражениях. В работах В.В.Кравцова (1956,1957,1960) было показано, что под влиянием длительных хронически повторяющихся болевых импульсов у животных стойко повышается количество лейкоцитов в периферической крови, наблюдаются относительный и абсолютный нейтрофилез, увели­чивается количество палочкоядерных нейтрофилов и метамиелоцитов. В отдельных случаях в периферической крови обнаруживаются даже ми­елоциты и миелобласты.

Помимо полицитемии и нейтрофильного лейкоцитоза при болевых раздражениях находили увеличение количества тромбоцитов в перифе­рической крови (Э.С.Андриасян,1945, А.А.Маркосян, 1966). По данным

А.А.Маркосяна лейкоцитоз возникает в первые же минуты после нане­сения болевого раздражения кроликам и через 15-20 минут количество кровяных пластинок приходит к исходному уровню. По мнению автора болевой тромбоцитоз при острых коцицептивных раздражениях обуслов­лен механизмами перераспределения. Однако в случае длительного хро­нического ноцицептивного воздействия данная реакция осуществляется

при участии костного мозга(А.А.Маркосян "Физиология тромбоцитов").

В.В.Кравцов (1960) наблюдал в этих случаях гиперплазию мегакарио­цитарного аппарата костного мозга.

Приведенные выше факты свидетельствуют о существенном влиянии нервной системы на систему крови. Болевые импульсы сигнализируют о действии сильных раздражителей, способных вызвать повреждение или гибель тканевых элементов и преставляющих угрозу для организма в целом. Изменения имеют в этом случае большое защитно-приспособи­тельное значение.Эта  реакция сложилась и закрепилась в ходе эво­люционного процесса, как важнейший элемент биологической защиты. Имеются все основания полагать, что рефлекторный механизм (при не­пременном участии ряда гуморальных факторов) является основным в реализации гематоморфологического ответа при болевых раздражениях. Одним из доказательств этого является возможность воспроизведения гематоморфологических изменений условно-рефлекторным путем.

8.  СТРЕСС  И  СИСТЕМА КРОВИ.

Дать краткое определение сущности и содержания самой реакции трудно.В связи с этим H.Selye на протяжении многих лет разрабаты­вал свои концепции о стрессе, приводил различные формулировки. В одной из последних работ он предложил следующее определение: " Стрессом называется неспецифическая реакция организма на любое предъявленное к нему требование".

Как было показано многочисленными работами H.Selye и его со­трудников, основная роль стресса заключается в усилении адаптаци­онных возможностей организма, способствующих сохранению его здо­ровья, что определяется как "эустресс". Но при неблагоприятных обстоятельствах, особенно при действии сильных или длительно дей­ствующих раздражителей реакция может приобретать роль патогенного фактора, и это обозначается термином "дистресс".

В связи с такой существенной ролью данной реакции в состоянии организма проблема стресса привлекла внимание большого числа иссле­дователей и ей посвящено огромное количество работ.Значение стресс­реакции во многом связано с проблемой гомеостаза, т.е. с теми меха-

низмами, которые обеспечивают известное постоянство внутренней сре­ды организма. В зависимости от силы воздействия для поддержания гомеостаза включаются различные уровни регуляторных систем.

ГОМЕОСТАЗ

|

обычные изменения среды  >>>>>>>>>>>>  местная авторегуляция

|

|

воздействие выше нормы >>>>>>>>>>>> корригирующее воздействие высшего уровня

|

|

чрезвычайный раздражитель,                                               нейроэндокринная стресс-

экстремальная ситуация   >>>>>>>>>>>>  реакция, мобилизация всех

систем

Стрессом принято считать ту форму адаптационных реакций, ко­торая связана с включением нейроэндокринного звена, вызывающего мобилизацию всех систем организма, как выражение крайнего напряже­ния защитных сил.

Стресс-реакция может возникать и без физического воздействия - при так называемом эмоциональном стрессе. Клинико-эксперименталь­ное восприятие стресса у человека было широко изучено шведскими авторами. Было показано, что как избыток, так и полное выключение психоэмоционального воздействия может привести к состоянию стрес­са (L.Levi,1972).

8.1. РОЛЬ НЕРВНОЙ И ЭНДОКРИННОЙ СИСТЕМ

В ВОЗНИКНОВЕНИИ СТРЕССА.

Начальный (афферентный) импульс, вызывающий стресс, неизвес­тен, это может быть эмоциональное возбуждение, нарушение гомеоста­за, влияние какого-либо метаболического фактора и так далее. Неза­висимо от природы раздражителя и возникновения "первого медиатора", решающее значение в эфферентном осуществлении стресс-реакции имеют два пути:

1) либо через гипоталамус >>гипофиз >> кору надпочечников

2) либо через возбуждение симпатической нервной системы, которое проявляется путем выделения катехоламинов - адреналина в мозго­вом слое надпочечников, норадреналина - в центральной нервной системе и адренэргических синапсах.

Особую роль в организме в начальную стадию стресс-реакции иг­рает симпатико-адреномедуллярная система. Значение симпатической нервной системы в адаптации организма значительно шире и выходит за пределы проблем стресса. Однако ее роль при стрессе рассматри­вается  в качестве одного из пусковых механизмов усиления секре­ции гипофиза. При психоэмоциональном воздействии на человека уве­личение уровня катехоламинов в крови и моче является наиболее чув­ствительным тестом стресс - реакции.  При этом включения системы гипофиз - кора надпочечников может и не быть.

Многочисленными работами H.Selye и его последователей уста­новлено, что основной гормональный механизм в реализации стресс­реакции запускается в гипоталамусе, в частности в дугообразном ядре. Здесь под влиянием нервных импульсов, поступающих из коры головного мозга, ретикулярной формации, лимбической системы, гип­покампа и миндалевидного комплекса, возникают сложные нейро-гумо­ральные процессы  (H.Selye,1979),  действующие по типу обратных связей.

Гипоталамус рассматривается как высший центр регуляции эндо­кринных функций. Поступающие в него афферентные сигналы реализуют­ся не только под влиянием нервных импульсов, но и различных гормо­нов (Б.В.Алешин, "Гипоталамус и щитовидная железа", 1981).

Установлено, что некоторые нервные клетки способны к секре­торной деятельности. Они воспринимают афферентный нервный импульс как обычно, но посылают свои эфферентные импульсы в виде гормонов. Гормоны гипоталамуса получили название релизинг-факторы.

8.2. УЧАСТИЕ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ

В ФОРМИРОВАНИИ РЕАКЦИИ СИСТЕМЫ КРОВИ

ПРИ СТРЕССЕ.

Известно, что передача импульса от нейрона к клеткам другой ткани осуществляется с помощью медиатора, который высвобождается из окончания нервного волокна и взаимодействует со специфическими рецепторами постсинаптических мембран. Однако, транссинаптический путь передачи нервного возбуждения на ткани не является единствен­ным. Это связано с тем, что медиаторы из синаптических щелей про­никают в межклеточную жидкость и кровь и, таким образом, превраща­ются в дистантные раздражители. Такая внесинаптическая передача нервного импульса особенно важна для кроветворных органов, где клетки в основном находятся во взвешенном состоянии и не имеют не­посредственной иннервации. Поэтому в последующие годы изучалось влияние на систему крови медиаторов нервной системы или выделяю­щихся под их влиянием веществ, а также препаратов, блокирующих рецепторы тканей. Применение различных нейротропных веществ позво­ляет более точно выявить отдельные механизмы нервной регуляции ге­мопоэза и миграции клеточных популяций системы крови  ( А.П.Гори­зонтов "Стресс и система крови").

Komiya (1956) представил убедительные доказательства роли центральной  нервной системы в регуляции гемопоэза. По его данным различные раздражения, вызывающие те или иные изменения в картине крови, адресуются прежде всего к нервным центрам, откуда возбужде­ние по нервным путям передается в печень и селезенку, где образу­ются гемопоэтины, стимулирующие тот или иной вид гемопоэза. Осно­вываясь на опытах с перевязкой чревных и блуждающего нервов, автор пришел к выводу, что симпатическая иннервация стимулирует, а пара­симпатическая тормозит гемопоэз.  Такой же точки зрения придержива­ются А.П.Ястребов,Б.Г.Юшков и др."Регуляция гемопоэза при  воздейс­твии на организм экстремальных факторов", было показано, что умень­шение числа клеток в селезенке регулиррется через альфа-адрено­рецепторы, увеличение числа лимфоидных клеток в костном мозгу-через бетта-адренергические рецепторы,  а через М-холинорецепторы  опос­редуется миграция эозинофилов из костного мозга.

8.3. ВЛИЯНИЕ АДРЕНАЛИНА

А.П. Горизонтовым"Стресс и система крови" было показано:

в связи с тем, что увеличение тонуса симпатической нервной

системы и выделение катехоламинов всегда имеет место в начальную

фазу стресс-реакции, естественно было предположить, не являются

ли быстро возникающие изменения в системе крови при стрессе резуль­татом воздействия симпатической нервной системы. Для решения этого вопроса было изучено действие адреналина, который вводился в дозе 1 мг/кг массы тела крыс.

Периферическая кровь:

число нейтрофилов уже через 3 часа после введения адреналина зна­чительно повышалось, достигая через 6 часов 400%-ного уровня нор­мы. В дальнейшем число нейтрофилов уменьшалось и через сутки было достоверно ниже нормы. Содержание лимфоидных клеток уменьшалось через 6 часов и 12 часов, однако незначительно и недостоверно;

Костный мозг:

через 6 и 12 часов было отмечено достоверное увеличение числа лим­фоцитов и некоторое уменьшение числа  зрелых  гранулоцитов (мак­симально через 6 часов). Содержание клеток в селезенке также умень­шалось, примерно 30%, а число тимоцитов практически не изменялось.

Таким образом изменение клеточного состава системы крови под влиянием больших доз адреналина почти не отличалось от изменений, наблюдавшихся при стресс-реакциях после воздействия разнообразных раздражителей (табл.N 5).

Изменение клеточного состава крови крыс через разные сроки после подкожного введения адреналина

в дозе 1 мг/кг

таблица 5

отделы  | клеточные  | исх.   |                                       сроки после введения(час)

| элементы   |значен. |   3                                     |   6                  |   12   |   24   |

перифер.

кровь

нейтроф.

лимфоц.

1.7*0.2

4.8*0.4

5.4*0.5

4.2*0.4

6.7*0.6

4.0*0.3

3.4*0.3

3.4*.04

0.5*0.1

4.9*0.9

костный

мозг

селезёнка

лимфоид.

клетки

нейтроф.

палочкояд.и

сегментояд.

миелобласты+

нейтроф.

промиелоцит.

и миелоциты

общ.число

37.2*1.9

42.5*2.6

5.7*0.4

930*44

45.7*6.2

38.0*3.6

6.6*0.7

600*46

50.2*0.4

37.6*0.3

6.9*0.6

640*43

55.6*5.4

38.5*3.8

4.9*0.6

820*88

51.3*8.3

41.2*5.8

6.8*1.1

920*83

тимус общ.число 1340*63 1240*83 1170*52 1384*52 1322*92

[ 3 (стр. 87)]

8.4. ИЗМЕНЕНИЯ В СИСТЕМЕ КРОВИ ПРИ ОДНОКРАТНОМ

ВОЗДЕЙСТВИИ НА ОРГАНИЗМ СТРЕССОВЫХ

РАЗДРАЖИТЕЛЕЙ (ИММОБИЛИЗАЦИЯ).

А.П.Горизонтовым и сотр., был проделан ряд опытов.

В качестве стресса применялась апробированная H.Selye (1936) модель нервно-мышечного напряжения. Иммобилизация животных на опе­рационном столе в течение 3-6 часов однократно. Через 3,6,9,12,24, 48 и 72 часа от начала иммобилизации крысы декапитировались, соби­ралась кровь. Извлекались бедро,тимус и селезенка для проведения количественного исследования клеточных популяций.

Периферическая кровь:

результаты изучения периферической крови показали, что 6-часовая

иммобилизация вызывает резко выраженный нейтрофилез, при котором

содержание нейтрофилов увеличивается в 6-7 раз через 6 и 9 часов

после начала воздействия. Через 24 часа число нейтрофилов резко

снижается и приближается к уровню нормы или близкому к нему, сох­раняясь в этих пределах и в дальнейшем. Число лимфоцитов через 6, 9 и 12 часов резко падает, возвращаясь к норме через 24 часа;

Костный мозг:

изучение клеточного состава костного мозга показало, что уже че­рез 3 часа от начала иммобилизации отмечается значительное увели­чение содержания лимфоцитов, сохраняющееся на протяжении 6-9 ча­сов. Вслед за этим число лимфоцитов резко падает и через 24 часа достигает уровня нормы, даже нижней ее границы. Число зрелых гра­нулоцитов в костном мозге в период между 3 и 9 часами убывало, возвращаясь к номе уже через 12-24 часа. Содержание бластных кле­ток гранулоцитарного ряда (миелобласт-миелоцит) в течение 24 часов колебалось в пределах доверительного интервала нормы и через 48 часов увеличивалось. Что касается эритроидных клеток костного моз­га, то закономерных изменений обнаружить не удалось, хотя по дан­ным некоторых исследователей число их подвергалось кратковременно­му увеличению или уменьшению.  Однако сроки возникновения этих из­менений не совпадают, и величина их в основном была недостоверной.

В специальных опытах на мышах-гибридах изучали содержание кроветворных клеток  (КОЕ) при 3 и 6-часовой иммобилизации (Ю.И.Зимин,1974). Результаты опытов показали, что  при введении 10   клеток костного мозга интактных доноров в селезенку реципиен-

тов вырастает 14,2+0,9 колоний. В то же время после введения кле­ток костного мозга от мышей , подвергшихся иммобилизации число колоний в селезенке было  21,3+1,15 (Ю.И.Зимин, 1974). В других опытах с помощью того же метода, но с подсчетом содержания клеток в костном мозге бедренной кости было показано, что число КОЕ во всем мозге бедренной кости увеличивается через 12 часов от начала 6-часовой иммобилизации до  2779+192  при  2141+46,6  в контроле (А.П.Горизонтов и др., 1981).

8.5. РЕАКЦИЯ СИСТЕМЫ КРОВИ НА ПОВТОРНОЕ

ВОЗДЕЙСТВИЕ 6-ЧАСОВОЙ ИММОБИЛИЗАЦИИ.

А.П.Горизонтовым были получены следующие данные:

Периферическая кровь:

результаты исследованных реакций периферической крови после пов­торного воздействия того же стрессора показали, что в крови наблю­дается однотипная стресс-реакция в виде нейтрофилеза и лимфопении. Однако степень повышения содержания нейтрофилов в периферической крови при повторном воздействии через 5 суток была менее выражен­ная, чем первичная. Еще менее значительным было увеличение числа нейтрофилов в том случае, если повторное воздействие стрессора проводилось через 11 суток после первичного. Лимфопения после пов­торного воздействия была более кратковременной и слабо выраженной. Обращает на себя внимание то, что в группе с интервалом между воз­действиями в 14 суток после кратковременного развития лимфопении к 24 часам развивалось достоверное увеличение числа лимфоцитов в периферической крови.

Костный мозг:

реакции на повторный стресс в костном мозге существенно отлича­лись от первоначальных. После первичной 6-часовой иммобилизации через 6-12 часов от начала воздействия в костном мозге как обычно возникал лимфоидный пик. В костном мозге крыс, вторично подвергших­ся иммобилизации через 5 суток, совсем не наблюдалось увеличения

числа лимфоидных клеток.

Лимфоидный пик вновь появлялся в опыте, где иммобилизация пов­торялась через 14 суток. Следует отметить, что уменьшение содержа­ния лимфоидных клеток в костном мозге через 48 часов меньше дове­рительного интервала нормы было выражено одинаково как при первич­ном, так и при повторных воздействиях.

При повторном воздействии стрессоров в первые 12 часов не происходило уменьшения числа зрелых клеток нейтрофильного ряда. Не наблюдалось также увеличения содержания бластных клеток этого ряда при повторном воздействии стрессора через 5 суток. Как видно из рисунка, после первичного воздействия стрессора число бластных клеток ко 2-ым суткам на 60% превысило уровень нормы.


Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.