скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Программа государственного экзамена по математике для студентов математического факультета Московского городского педагогического университета

L(E) = .

Заметим, что линейная оболочка системы векторов является линейным подпространством.

Говорят, что вектор v линейно выражается через  систему E, если v Î L(E).

Отметим простейшие свойства линейных оболочек:

(а) Если W - подпространство в V, E Í W, то L(E) Í W;

(б) Линейная оболочка L(E) совпадает с пересечением всех линейных подпространств, содержащих систему E;

(в) L(E È G) = L(E) + L(G), где сумма подпространств U и W определяется равенством U + W := { u + w½ u Î U, w Î W }.

20. Линейно независимые системы.

Линейная комбинация векторов называется тривиальной, если все ее коэффициенты равны 0. Значение тривиальной линейной комбинации равно 0.

Определение. Система векторов называется линейно независимой, если всякая ее нетривиальная линейная комбинация отлична от нуля.

Заметим, что для доказательства линейной независимости системы  достаточно приравнять к нулю произвольную ее линейную комбинацию и вывести из этого равенство нулю всех ее коэффициентов.

Кроме того, система векторов является линейно зависимой, если некоторая ее нетривиальная линейная комбинация равна 0.

Нам потребуются в дальнейшем следующие две леммы, которые мы приведем без доказательства.

Лемма 1. Если система E линейно независима, а система EÈs (полученная присоединением вектора s к системе E) линейно зависима, то s линейно выражается через E.

Лемма 2 (основная лемма о линейной зависимости).

Большая система линейно зависима, если она линейно выражается через маленькую“.

30. Базис линейного пространства.

Определение 1. Система E называется базисом линейного пространства V (обозначение B(V)), если выполнены условия:

(а) E линейно независима;

(б) V = L(E), т.е. всякий вектор пространства V линейно выражается через E.

Наряду с данным определением можно привести и другие эквивалентные определения.

Определение 2. Максимальная линейно независимая система E называется базисом линейного пространства V.

Определение 3. Система E называется базисом линейного пространства V, если всякий вектор пространства V однозначно записывается в виде линейной комбинации векторов системы E.

Заметим, что указанные определения равносильны.

40. Размерность линейного пространства.

Определение. Линейное пространство называется конечномерным, если оно обладает конечным базисом.

Определение. Число элементов в каком-нибудь базисе линейного пространства V называется его размерностью; обозначение dimV. Нулевое пространство имеет по определению пустой базис и нулевую размерность.

Отметим прежде всего теорему о корректности определения размерности.

Теорема. Всякие два базиса одного конечномерного пространства содержат одинаковое число векторов.

Доказательство. Пусть E и G - два базиса пространства V. Эти системы векторов линейно эквивалентны, т.е. они линейно выражаются друг через друга. Если бы одна система была “большой”, а другая “маленькой”, то “большая” система оказалась бы линейно зависимой в силу основной леммы о линейной зависимости, значит, обе они содержат одинаковое число векторов. ÿ

Следствие.

(а) Размерность линейной оболочки L(E) равна рангу системы E (ранг системы - максимальное число ее линейно независимых векторов): dim L(E) = r(E).

(б) Всякая система векторов n-мерного линейного пространства, содержащая более n элементов линейно зависима.

50. Примеры.

1. Координатное пространство kn имеет стандартный базис из единичных векторов ei := (0, . . . , 0, 1, 0, . . . , 0) ( единица находится на месте с номером i), следовательно, dim kn = n. Можно доказать, что система из n векторов-строк образует базис пространства kn Û определитель этой системы отличен от нуля.

2. Базис пространства решений однородной системы линейных уравнений - это фундаментальная система решений.

3. Пространство матриц  имеет стандартный базис из матричных единиц Eij (единица находится на месте с номером (i, j), следовательно,

dim  = nm.

4. Пространства многочленов Qn[x] с рациональными коэффициентами степени не превосходящей n имеет следующие базисы:

а) стандартный базис вида 1, x, x2, . . . , xn;

б) базис Тейлора “в точке c”:

1, (x - c), (x - c)2, . . . , (x - c)n , где c - некоторое число;

в) [базис Лагранжа “в точке (c1, . . . , cn+1)”:

gi(x) = {(x - c1) . . . (x - ci)^ . . . (x - cn+1)}/ {(ci - c1) . . . (ci - ci)^ . . . (ci - cn+1)},

где c1, . . . , cn+1 - попарно различные скаляры, а знак ^ означает отсутствие указанного множителя.]

Координаты многочлена f(x)

относительно стандартного базиса - это его коэффициенты;

относительно базиса Тейлора - это строка ;

[относительно базиса Лагранжа - это строка (f(c1), . . . , f(cn+1)).]

5. Вещественное линейное пространство C имеет стандартный базис (1, i).


7. Основные теоремы о  системах линейных уравнений

10. Исследование системы линейных уравнений.

Пусть задана система линейных уравнений: Ax = b, где A- основная матрица, x- столбец переменных, b - столбец свободных членов. С помощью элементарных преобразований строк в основной матрице можно построить максимальную систему единичных столбцов. Кроме того, удалим из расширенной матрицы нулевые строки. Тогда можно считать, что расширенная матрица системы уравнений имеет вид:

,

где в последней строке ведущий элемент обозначен через d.

Для ненулевого числа d  возможны два случая:

(а) d  находится до черты, т.е. лежит в основной матрице. Следовательно, в этом случае мы можем написать общее решение совместной системы. Заметим, что все переменные будут связаны Û ранг основной матрицы равен числу переменных системы.

(б) d  находится после черты; тогда система несовместна и ранг основной матрицы меньше ранга расширенной матрицы на единицу.

Тем самым, мы доказали теорему.

Теорема. Пусть d - ведущий элемент последней строки приведенной ступенчатой матрицы. Тогда

(а) система совместна  Û d  находится до черты;

(б) система несовместна  Û d  находится после черты;

(в) система является определенной  Û d  находится до черты и все переменные связанные;

(г) система является неопределенной Û d  находится до черты и имеется хотя бы одна свободная переменная.

20. Критерии совместности и определенности.

Из приведенной теоремы немедленно вытекают следующие два критерия.

Критерий совместности (теорема Кронеккера-Капелли). Система Ax = b линейных уравнений является совместной Û ранг основной матрицы равен рангу расширенной матрицы, т.е. r(A) = r(A½b).

Критерий определенности. Система Ax = b линейных уравнений от n переменных является определенной Û ранг основной матрицы равен рангу расширенной матрицы и равен числу переменных в системе, т.е. r(A) = r(A½b) = n.

30. Связь между решениями совместной неоднородной и связанной с ней однородной системами линейных уравнений.

Допустим, что дана совместная система линейных уравнений:

Ax = b.

(1)

Пусть z0, z1, z2 - частные решения системы (1), z - ее общее решение. Тогда справедливы равенства Az1t = b, Az2t = b. Вычитая почленно из первого второе, на основании известных свойств, получаем: 0 = Az1t - Az2t = A(z1t - z2t) = A(z1 - z2)t, т.е. разность между двумя частными решения системы (1) является решением связанной с ней однородной системы

Ax = 0.

(2)

Если теперь x - общее решение системы (2), то имеем Ax t = 0, следовательно,

b = b + 0 = Az0t + Ax t = A(z0t +x t) = A(z0 +x )t,

т.е. сумма частного решения системы (1) и общего решения системы (2) является решением системы (1).

Таким образом, справедлива

Теорема. Общее решение совместной неоднородной системы (1) является суммой частного решения системы (1) и общего решения системы (2).

Поскольку общее решение однородной системы может быть записано в виде линейной комбинации ФСР, то получаем, что общее решение системы (1) можно записать в следующей параметрической форме:

z = z0 + a1x1 + a2x2 + . . . + amxm,

где z0  - какое-нибудь частное решение системы (1); x1, x2, . . . , xm - ФСР системы (2),

a1, a2, . . . , am - действительные параметры; m = n - r(A).


8. Корни многочлена; схема Горнера; теорема Безу

10. Корни многочлена.

Определение.  Число c называется корнем многочлена f, если f(c)=0.

Другими словами, число c является корнем многочлена f, если

a0cn  + a1cn-1 + ... + an - 1c + an = 0.

Это равенство означает, что число c является корнем уравнения

a0 xn + a1xn-1 + ... + an - 1 x + an = 0,

при подстановке вместо x числа c получается верное равенство. Поэтому корень многочлена f и корень соответствующего уравнения f(x) = 0 - это одно и то же.

 Схема Горнера позволяет проверять, является ли данное число c корнем данного многочлена или нет: с ее помощью мы как раз и вычисляем значение f(c).

 Если требуется проверить несколько значений c, то для экономии выкладок строят не три отдельные схемы, а одну - объединенную. Например, для многочлена

 f = 3x5 - 5x4 - 7x2  + 12

и чисел c = 1,-1,2 составляется таблица

3 -5 0 -7 0 12
1 3 -2 -2 -9 -9 3
-1 3 -8 8 -15 15 -3
2 3 1 2 -3 -6 0

Конечно, при заполнении третьей и четвертой строки таблицы работает" только первая строка - строка коэффициентов многочлена f.

Мы видим, в частности, что из трех рассмотренных чисел только c = 2 является корнем данного многочлена.

20. Теорема Безу.

Теорема Безу. Пусть f - многочлен, c - некоторое число.

1. f делится на двучлен x - c тогда и только тогда,  когда число c является его корнем.

2. Остаток от деления f на x - c равен f(c).

Доказательство. Сначала мы докажем второе утверждение.  Для этого разделим f c остатком на x - c:

f = (x - c)q + r;

по определению остатка, многочлен r либо равен 0,  либо имеет степень,  меньшую степени x - c, т.е. меньшую 1.

Но степень многочлена меньше 1 только в случае,  когда она равна 0, и поэтому в  обоих случаях r на самом деле является числом - нулем или отличным от нуля.

Подставив теперь в равенство f = (x - c)q + r значение x = c, мы получим

f(с) = (с - c)q(с) + r = 0,

так что действительно r = f(c), и первое утверждение доказано.

Теперь первое утверждение почти очевидно. В самом деле, утверждение "f делится на x - c" означает,  что остаток от деления равен 0. Но остаток,  по доказанному, равен f(c), так что "f делится на x - c" означает то же самое, что и f(c) = 0. ÿ

Теорема Безу дает возможность,  найдя один корень многочлена, искать далее  корни многочлена,    степень которого на 1 меньше: если f(c) = 0, то f = (x - c)q,  и остается решить уравнение q(x) = 0. Иногда этим  приемом  -  он называется понижением степени - можно найти все корни многочлена. В частности, подобрав один корень кубического уравнения,  можно  его  полностью  решить - после понижения степени достаточно решить полученное квадратное уравнение.

Решим в качестве примера уравнение

 x4 - x3 - 6x2 - x + 3 = 0.

Целые корни  многочлена  f = x4 - x3 - 6x2 - x  + 3  должны быть делителями свободного члена, так что это  могут  быть  только числа    ±1 и    ±3.  При этом 1 не является корнем  многочлена f, поскольку сумма его коэффициентов, очевидно, не равна 0.

При x = -1: имеем схему

1 -1 -6 -1 3
-1 1 -2 -4 3 0

Мы видим, что -1 - корень f , и в частном получается  многочлен

g = x3 - 2x2 - 4x +3.

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.