скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Полный курс лекций по математике

Пример 1. Вычислить (2х2 -3 -1)dx.

Решение. Воспользуемся свойствами 4 и 5 неопределенных интегралов и первой табличной формулой. (2х2 -3 -1)dx = 2х2 dx - 3х1/2 dx - dx=

= 2(x2/2) – 3[(х3/2 *2)/3] – x + C = x2 - 23 – x +C.

Пример 2. (2/ -1/х + 4sinx)dx = 2х –1/2dx – ln │х│ - 4cosx + C =

= 2[(x1/2 *2)/1] – ln │x│ - 4 cosx +C = 4 -ln│x│- 4cosx + C.

Для вычисления неопределенных интегралов применяют следующие методы: метод непосредственного интегрирования, метод подстановки(метод замены переменной), метод интегрирования по частям.

Существуют элементарные функции первообразные которых элементарными функциями не являются. По этой причине соответствующие неопределенные интегралы называются «неберущимися» в элементарных функциях, а сами функции не интегрируемыми в элементарных функциях.

Например, e –x^2 dx, sinх2 dx, cosх2 dx, sinx/x dx, cosx/x dx, dx/lnx – «неберущиеся» интегралы , т.е. не существует такой элементарной функции, что F `(x) = e –x^2, F ` (x) = sinx2 и т.д.


 Тема 13. Определенный интеграл, его свойства.

Формула Ньютона - Лейбница.

Понятие интегральной суммы.

Пусть на отрезке [a, в] задана функция у = f(x). Разобьем отрезок на п элементарных отрезков точками деления а = х0, х1, х2, …, хп = в. На каждом элементарном отрезке [xi-1, xi] выберем произвольную точку Сi и положим

n

 
∆хi = xi – xi-1, где i = 1,2,…,п, в каждой точке Сi найдем значение функции f(Ci), составим произведения f(C1)∆x1, f(C2)∆x2, …, f(Ci)∆xi, …, f(Cn)∆xn, рассмотрим сумму этих произведений:

I=1

 
f(C1)∆x1 + f(C2)∆x2 + … + f(Ci)∆xi + … + f(Cn)∆xn = Σ f(Ci)∆xi.

Эту сумму будем называть интегральной суммой для функции у=f(x) на отрезке [а, в]. Интегральная сумма зависит как от способа разбиения отрезка [a, в] на п частей так и от выбора точек С1, С2, …, Сп на каждом элементарном отрезке разбиения.

Геометрический смысл интегральной суммы.

Пусть у = f(x) неотрицательна на отрезке [а, в]. Рис.1

                                                                         y = f(x)

                  у


                                      S1        S2            S3

                 0      а=х0  в1   х1   с2    х2    с3     х3 =в                 х

                                                                                                               Рис.1

Пусть п=3, тогда а = х0, х1, х2, х3=в.

С1 ,С2 ,С3 точки, выбранные произвольно на каждом элементарном отрезке.

S1 = f1(C1) ∆x1 – площадь прямоугольника, построенного на первом отрезке разбиения, ∆х1 = х1-х0,

S2 = f2(C2) ∆x2 – площадь прямоугольника, построенного на втором отрезке разбиения. ∆х2 = х2-х1,

3

 
S3 = f3(C3) ∆x3 – площадь прямоугольника, построенного на третьем отрезке разбиения. ∆х3 = х3-х2,

I=1

 
S = S1 + S2 +S3 = f1 (C1)∆x1 + f2 (C2)∆x2 + f3 (C3)∆x3 = Σ f(Ci)∆xi.

Это площадь ступенчатой фигуры, составленной из прямоугольников.

Понятие определенного интеграла.

n

 
Обозначим длину наибольшего из отрезков разбиения через max ∆хi, где i=1,2,…п

i=1

 
Определение. Пусть предел интегральной суммы Σ f(Ci)∆xi при стремлении max ∆хi к нулю существует, конечен и не зависит от способа разбиения отрезка

i=1

 

n

 
[a, в] на части и от выбора точек С1, С2, …, Сп. Тогда этот предел называется определенным интегралом от функции у = f(х) на [а, в] и обозначается , т.е  = lim Σ f(Сi)∆xi при

       max ∆xi →0

Число а называется нижним пределом, b – верхним пределом, f(x) – подинтегральной функцией, f(x)dx – подинтегральным выражением.

Некоторые свойства определенного интеграла.

10 . Значение определенного интеграла не зависит от обозначения переменной интегрирования, т.е.

 =  =  и т.д.

20.    есть число.  

30.  = - , а<b

40. Постоянный множитель можно выносить за знак интеграла.

 = m , где m – const.

50.  Интеграл от суммы функций равен сумме интегралов.

60. Если отрезок интегрирования разбит на части (a < c < b), то интеграл на всем отрезке равен сумме интегралов на каждой из частей.

x

 

b

 

c

 

a

 
 = ,

Существует еще ряд важных свойств определенного интеграла, которые подводят нас к формуле для вычисления определенного интеграла. Эта формула называется формулой Ньютона – Лейбница для f(x) непрерывной на [а; b].

 = F(b) – F(a), где F(x) некоторая первообразная для функции f(x).

Например,  - вычислить.

1)  

1

 
Находим первообразную для функции х2, т.е. неопределенный интеграл от х2, произвольную постоянную С приравняем к нулю.

 0

 
          = x3/3 │ = 1/3 – 0/3 = 1/3

2)   Подставим в первообразную х3/3 вначале значение верхнего предела, равного 1, затем значение нижнего предела, равного 0 вместо х.

π/2

 


2

 

π/6

 
Пример 1. Вычислить │= sin π/2 – sin π/6 = 1 – ½ = 1/2

 -1

 
Пример 2. Вычислить │ = 22 – 24/4 – [ (-1)2 – ((-1)4/4)] =

= 4 – 4 –(1- (1/4)) = -3/4.


 Тема 14. Несобственные интегралы.

          Мы ввели понятие определенного интеграла от функции y = f(x) на отрезке [а; b], когда функция y = f(x) была интегрируема (и, следовательно, ограничена) на конечном отрезке [а; b]. Если отрезок интегрирования бесконечен, или функция не ограничена на отрезке интегрирования, то мы встречаемся с понятием несобственного интеграла.

          Несобственные интегралы с бесконечными пределами интегрирования.  

          Рассмотрим интеграл с переменным верхним пределом . Такой интеграл есть некоторая функция от переменного верхнего предела, т.е.

          = Ф(х), х ≥ а.

          Определение.  – называется несобственным интегралом от функции f(x) на интервале [а;¥), вводится он как предел функции Ф(t) при t  ®¥, т.е.

 t→∞

 
          .

          Если этот предел существует и конечен, то несобственный интеграл называется сходящимся, если предел бесконечен или не существует, то несобственный интеграл называется расходящимся.

 
          Пример 1. Вычислить 

x→∞

 

2

 
          Решение  = lnx │  = lim lnx – ln2 = ∞ - ln2 = ∞.   Интеграл расходится.

 
          Пример 2. Вычислить

x→∞

 

 

1

 

1

 
 Решение  =  = x –2/-2 │  = -1/(2x 2) │= -1/2 (lim 1/x2 – 1) = -1/2 (0-1) = 1/2

Интеграл сходится к ½.

          По аналогии определяется несобственный интеграл на интервале (-¥, b].

 b→ −∞

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.