скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Полный курс лекций по математике

Определение предела функции. Пусть функция у = f(х) определена в некоторой точке а, кроме, может быть, самой этой точки.

Число b называется пределом функции f(х) при х стремящемся к а, если для любого сколь угодно малого, наперед заданного ε>0 существует такое δ>0, что для всех х таких, что |х-а|<δ выполняется неравенство |f(x) - b|<ε.

x→a

 
          В компактном виде это определение можно записать lim f(x) = b.

(lim – сокращенное слово limit(предел)).

Читается так: предел f(x) при х стремящемся к а равен b.

При отыскании предела мы не учитываем значение функции в самой точке а, оно может быть любым. Рис. 1, 2, 3, 4.

        y                                                                                y

f(a)=b

 
                                                                                   f(a)                                         y= f(x)

                                          y = f (x)

                                                                                        b

                                                                                          0

          0             a                                x                                  а                                 х

Рис.1                                                                        Рис.2


       y

                                                                                     f(a)

   f(a)

            

             0                 a                     x                                     0           a                         x

Рис.3                                                                        Рис.4

На приведенных рисунках предел существует в случаях 1) и 2), причем во 2) значение функции в точке а не совпадает с предельным, а в 1) совпадает f(a) = b . На рисунках 3) и 4) предел у функции в точке а не существует.

х→а

 
Определение. Функция f(x) называется непрерывной в точке а, если ее предел в этой точке совпадает со значением функции в той же точке, или lim f(x) = f(a).

 Все элементарные функции непрерывны в каждой точке, где они определены.

Основные теоремы о пределах функций.

1. Предел суммы двух функций равен сумме пределов.

х→а

 

х→а

 

х→а

 
          lim (f(x) + φ(x)) = lim f(x) + lim φ(x)

2. Предел произведения двух функций равен произведению пределов.

х→а

 

х→а

 

х→а

 
          lim [f(x) * φ(x)] = lim f(x) * lim φ(x)

3. Предел произведения числа на функцию равен произведению числа на предел функции.

х→а

 

х→а

 
          lim С*f(x) = С *lim f(x)

Это свойство можно записать так: постоянный множитель выносится за знак предела.

4. Предел отношения двух функций равен отношению пределов этих функций. (Кроме случая, когда знаменатель стремиться к нулю).

х→а

 

х→а

 

х→а

 

х→а

 
          lim f(x) / φ(x) = lim f(x) / lim φ(x), limφ(х)≠0.

                                                                                             

Если знаменатель стремиться к нулю, а числитель - нет, то говорят, что отношение стремиться к бесконечности.

Бесконечность – это не число, ее можно добавить ко множеству вещественных чисел R в качестве нового элемента ∞. После этого числовая прямая превращается в так называемую расширенную прямую.

Раз мы добавили новый элемент ко множеству вещественных чисел, то запишем арифметические операции с этим элементом ∞.

Пусть а любое вещественное число, а Є R, тогда

а + ∞ = ∞ -∞ + а = -∞ ∞ * (-а) = - ∞, а › 0
∞ - а = ∞ -∞ - а = - ∞ ∞ * ∞ = ∞
а * ∞ = ∞, а ≠ 0 ∞ + ∞ = ∞ а/∞ = 0, ∞/а = ∞
- ∞ - ∞ = - ∞

Есть особые случаи, когда предел суммы, произведения или частного нельзя найти, зная только пределы слагаемых, сомножителей или делимого и делителя. Такие случаи называются неопределенностями.

Выделяют неопределенности двух типов:

Арифметические неопределенности (0/0); (00/00); (00 – 00); (0 * 00).

Степенно-показательные неопределенности (100); (000); 00.

Эти записи не являются операциями над числами и 00, они представляют собой только деловые обозначения.

В случае неопределенности предел может быть равен нулю, конечному числу, бесконечности или не существовать. Для нахождения предела (раскрытие неопределенности) надо исследовать каждый случай отдельно.

х→ -2

 
Пример 1. Найти lim [(х2 – 4) / (x2+x – 2)].

Решение:

х→ -2

 
1) Подставим точку х = - 2 в нашу функцию, получим lim [(х2 – 4) / (x2+x – 2)] =

 = (4 – 4) / (4 – 2 – 2) = (0/0).

х→ -2

 

х→ -2

 
2) Раскроем эту неопределенность, разложив числитель и знаменатель на простые множители, найдя корни числителя и знаменателя, тогда lim [(х2 – 4) / (x2+x – 2)] lim [(х – 2) * (x+2)] / [(x-1)*(x + 2)] = (-2 – 2)/(-2-1) = -4/ -3= 4/3/

 

х→ 00

 
        Пример 2. lim  [(х2 – 4) / (x2+x – 2)]

Решение:

х→ 00

 

х→ 00

 

х→ 00

 
 lim  [(х2 – 4) / (x2+x – 2)] = (00/00).  Чтобы раскрыть эту неопределенность, вынесем за скобки из числителя и из знаменателя х в старшей степени, т.е. х2, получим: lim  [(х2 – 4) / (x2+x – 2)] = lim  [(х2 *

х→ 00

 

х→ 00

 
 (1 – 4/х2) / (x2(1+1/x – 2/x2)] = 1/1=1, т.к. lim  4/х2 = 4 / 00 = 0, . lim  1/х =

х→ 00

 
1/00=0 и . lim  2/х2 = 2/00

Для раскрытия неопределенностей используются не только различные приемы преобразования функций, как мы видели в примерах 1 и 2, но и так называемые замечательные пределы.

х→ 0

 
Первый замечательный предел .lim  sinx/х = 1, он раскрывает неопределенность (0/0).

х→ 00

 
Второй замечательный предел. .  lim  (1+1/х)х = ℮, где ℮=2, 7, …

иррациональное «непперово» число. Это число часто берут за основание логарифма, тогда такой логарифм обозначается так: log℮x = lnx и называется натуральным логарифмом.

х→ 0

 
Пример. 3 Найти lim  (sin3x)/х = (0/0).

х→ 0

 

х→ 0

 
Решение: lim  (3sin3x) / (3х) = 3 lim  (sin3x) / (3х) = 3*1 = 3

х→ 0

 
Пример. 4 Найти lim  (sin5x)/(sin2х) = (0/0).

х→ 0

 

х→ 0

 
Решение: lim  (sin5x / sin2х) = lim  [((sin5x / 5х)*5x) / ((sin2x / 2x) * 2x)]

х→ 0

 

х→ 0

 
= 5/2 * [(lim (sin5x / 5х)) / lim (sin2x / 2х)] = 5/2

х→ 00

 
Пример. 5 Найти lim  (1+(1/2x))x = 100.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.