скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Полный курс лекций по математике

х→ 0

 
Решение: lim  (1+(1/2x))2x * (1/2) = ℮1/2=

х→ 00

 
Пример. 6 Найти lim  (1+(1/(x-1))x = 100.

х→ 00

 

х→ 00

 
Решение: lim  [1+(1/(x-1))]x -1+1 =  lim  [(1+(1/(x-1)))x -1 * (1+(1/(x-1)))1] = ℮*1 = ℮


 Тема 11. Производная и дифференциал.

Приращение аргумента, приращение функции.

0

 
Пусть функция у= f(х) определена в точке х0 и некоторой ее окрестности, придадим точке х0 приращение Δх и получим точку х0+Δх, значение функции в этой точке – f(х0+Δх). Разность значений f (х0+Δх) – f(х0) называется приращением функции, обозначается приращение функции Δf или Δу, т.е. Δf=f(х0+Δх) – f(х0). Рис. 1

                                      у                                                      Рис.1

У = f(х)

 


                                                                                Δу

х

 


                                                            х0            х0 + Δх

Производная функция у = f(х), в точке х0 определяется как предел отношения приращения функции Δу к приращению аргумента Δх, при стремлении Δх к нулю. f `(x0) = lim (Δf/Δx). Этот предел будет иметь конечное значение, если только и числитель стремиться к нулю (приращение функции Δf→0).

Производная имеет смысл скорости изменения какого – либо показателя. Дифференциал определяется как главная линейная часть приращения функции. Дифференциал показывает, как изменялась бы величина, если бы скорость ее изменения была бы постоянной. Дифференциал для функции у=f(х) обозначается через dy или df. Вычисляется он по формуле dy=f `(x)dx, где f ` (x) – производная функция f(x), а dx – число равное приращению независимой переменной (аргумента) ∆х.

Для вычисления производной  выведены правила нахождения производной и таблицы производных элементарных функций. Функция, имеющая производную в точке х, называется дифференцируемой в этой точке. Если функция имеет производную в каждой точке интервала, то она называется дифференцируемой в интервале.

Правила дифференцирования функций.

Пусть U(х) и V(х) дифференцируемы в точке х.

1.   (U(x) + V(x))` = U`(x) + V`(x)

2.   (U(x) * V(x))` = U`(x) * V`(x) + V`(x) * U`(x)

3.   (C*U(x))` = CU`(x), C - const

4.   (U(x) / V(x))` = [U`(x) * V(x) - V`(x) * U(x)]/ V2(x)

Таблица производных.

1.   C` = 0, C – const.

2.   x` = 1

3.   (xα)` = α xα – 1, α Є R

4.   (ax)` = ax lnx, a>0 , a≠1

5.   (ln x)` = 1/x

6.   (sin x)` = cos x

7.   (cos x)` = - sin x

8.   (tg x)` = 1/(cos x)2

9.   (ctg x)` = - 1/(sin x)2

10.                                                                                (arcsin x)` = 1/2)

11.                                                                                (arccos x)` = - 1/2)

12.                                                                                (arctg x)` = 1/(1 + x2)

13.                                                                                (arcctg x)` = - [1/(1 + x2)]

правила для нахождения дифференциала можно написать самим, умножив соответствующее правило взятия производной на dx.

Например: d sinx = (sinx)`dx = cosx dx.

Пример 1. Найти приращение функции f(x) = x2, если х = 1, ∆х = 0,1

Решение: f(х) = х2, f(х+∆х) = (х+∆х)2

Найдем приращение функции ∆f = f(x+∆x) – f(x) = (x+∆x)2 – x2 = x2+2x*∆x+∆x2 – x2 = 2x*∆x + ∆x2/

Подставим значения х=1 и ∆х= 0,1, получим ∆f = 2*1*0,1 + (0,1)2 = 0,2+0,01 = 0,21

Пример 2. Найти производную функции f(x) = x2, в произвольной точке х по определению производной, т.е. не используя таблицу производных.

∆x→0

 
Решение: (х2)` = lim   ∆f / ∆х

Из первого примера ∆f = 2x*∆x+∆x2, подставим, получим

∆x→0

 

∆x→0

 

∆x→0

 
(x2)` = lim   ∆f / ∆х = lim   (2x*∆x+∆x2)/∆x = lim  [∆x (2х + ∆х)]/ ∆x = 2x

Пример 3. у = 1-х, Найти ∆у при х=2, ∆ = 0,1

Решение: у(х) = 1-х, у(х+∆х) = 1 – (х+∆х),

∆у = у (х+∆х) – у(х) = 1-х - ∆х – (1 – х) = 1-х - ∆х – 1 + х = - ∆х

при х = 2, ∆х = 0,1 ∆у = -∆х = -0,1.

Пример 4. Найти производную от функции у=3х4 – 2х2 + 1.

Решение у` = 3*4х3 – 2*2х + 0 = 12х3 – 4х.

Пример 5. Найти производную от функции у = x2 *℮х.

Решение: у` = (x2)` *℮х + x2 *(℮х)` = 2x ℮х + x2 *℮х  ln℮

ln ℮ = log℮℮ = 1.              y` = 2x℮x + x2 * ℮x

Пример 6. У = х/(х2+1). Найти у`.

Решение у` = [1*(х2+1) – х*2х] / (х2+1)2 = [х2+1 – 2х2] / (x2 +1)2 = (1-x2) / (x2+1)2

Производные от сложных функций.

Формула для нахождения производной от сложной функции такова:

[f (φ(х))]` = fφ`(φ(x)) * φ`(x)

Например: у = (1-х2)3; у`= 3(1 –х2)2 * (-2х) или у = sin2х; у` = 2sinx * cosx. 

Пример 7 . Найти dy, если у = sin 3х

Решение dy = у` * dx = (sin3x)` dx = (cos3x) * 3dx = 3 cos3x dx.

Пример 8. Найти dy, если у = 2х^2/

Решение: dy = y` * dx = (2x^2)` * dx = 2x^2 ln2 * 2xdx

Производные высших порядков.

Пусть мы нашли от функции у = f(х) ее производную у` = f `(х). Производная от этой производной и называется производной второго порядка от функции f(х) и обозначается у`` или f `` (х) или (d2y) / (dx2). Аналогично определяются и обозначаются:  производная третьего порядка у``` = f ```(x) = (d3y) / (dx3).

                              производная четвертого порядка уIV = f IV(x) = (d4y) / (dx4).

                              производная n-oго порядка у(n) = f (n)(x) = (d n y) / (dxn).

Пример: у = 5х4 – 3х3 + 2х – 2. Найти у``.

Решение. Находим в начале первую производную: у` = 20х3 – 9х2 +2, потом вторую от первой производной: у`` = 60х2 – 18х.

Пример. y=хsinx. Найти у```.

Решение. y` = sinx + xcosx

y`` = cosx + cosx – x sinx = 2cosx – x sinx

y``` = -2sinx – sinx – x cosx = -3sinx – x cosx.


 Тема 12. Понятие первообразной. Неопределенный интеграл. Свойства неопределенного интеграла.

Определение. Функция F(x) называется первообразной для функции f(x) на интервале Х, если в каждой точке этого интервала выполняется условие

F ` (x)=f(x).

Например, для функции f(x) = 2х первообразной является F(х) = х2 для любых х Є (-∞, ∞).

Действительно, F`(x) = 2x = f(x).

F1(x) = x2 + 2 так же является первообразной для f(x) = 2x, F2(x) = x2 – 100 первообразная той же функции f(x) = 2x.

Теорема. Если F1(x) и F2(x) первообразные для функции f(x) на некотором интервале Х, то найдется такое число С, что справедливо равенство:

F2(x) = F1(x) + C,

Или можно сказать так, две первообразные для одной и той же функции отличаются друг от друга на постоянное слагаемое.

Определение. Совокупность всех первообразных для функции f(x) на интервале Х называется неопределенным интегралом от функции f(x) и обозначается f(x)dx, где - знак интеграла, f(x) – подинтегральная функция, f(x)dx – подинтегральное выражение. Таким образом

f(x)dx = F(x) + C,

F(x) – некоторая первообразная для f(x), С – произвольная постоянная. Операция нахождения неопределенного интеграла от функции называется  интегрированием этой функции.

Основные свойства неопределенного интеграла.

1.    ((f(x)dx)` = f(x). Производная от неопределенного интеграла равна подынтегральной функции.

2.    Дифференциал от неопределенного интеграла равен подинтегральному выражению.                 d(f(x)dx) = f(x)dx.

3.    Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого.

d(F(x)) = F(x) + C.

4.    Постоянный множитель можно выносить за знак интеграла:

                                      , где к - число

5.    Интеграл от суммы двух функций равен сумме интегралов от этих функций

(f(x) +φ(x))dx = f(x)dx + φ(x)dx.

Для вычисления неопределенных интегралов от функций используют таблицу неопределенных интегралов, которая приводиться ниже.

Таблица неопределенных интегралов.

1.   хα dx = [xα+1 / (α +1)] +C, α ≠ -1, α Є R

2.   dx/x = ln│x│+C

3.   ax = (ax/ln a)+C, exdx = ex+C

4.   sinx dx = -cosx + C

5.   cosx dx = sinx + C

6.   dx/(cosx)2 = tgx + C

7.   dx/(sinx)2 = -ctgx + C

8.   dx /2-x2) = (arcsin x/a) + C

9.   dx / 2 – x2) = (-arccos x/a) +C

10.                                   dx / a2 +x2 = 1/a arctg x/a +C

11.                                   dx / a2 +x2 = - 1/a arcctg x/a +C

12.                                   dx / a2 -x2 = 1/2a ln │x+a/x-a│ +C

13.                                   dx / a2 +x2) = ln │x+ 2+x2)│ +C.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.