скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыУчебное пособие: Алгоритм решения Диофантовых уравнений

Решение уравнения Каталана

Уравнение данного вида получается при попытке решения гипотезы Биля. Поэтому решение данного уравнения является как бы леммой гипотезы Биля. Ответ будет дан лишь в качественной оценке. Количественный анализ принципиально не труден, но нуден.

Рассмотрим 2 варианта:

- I      А - чётное число, В - нечётное число;

-        II      А - нечётное число, В - чётное число.

Каждый из вариантов распадается опять же на два случая:

А > В, Х < У;

А < В, Х > У.

И требуется перебрать комбинации Х, У – чётные - нечётные числа.

Итого 16 вариантов. Плюс варианты гипотезы Биля.

И если всё это обилие решать количественно, - это уже приличная работа для издания отдельной брошюры, а не публикации в формате статьи.

Вариант I.

1. А > В, Х < У            Х – чётное число, У – чётное число.

Основания и показатели расписываю за один заход.

, где конечно же *1>2, а  1 <  2.

Вначале разбираемся с показателями

На второй стадии пройдусь по основаниям

Равенство левой и правой части уравнения невозможно.

Тогда и исходное уравнение  решений не имеет.

2. А > В, Х < У            Х – нечётное число, У – нечётное число.

Во всех решениях вначале степень, затем основание

Решим полученное условие относительно А и В.

   

     

После подстановки А=В+1.

Т.е., чтобы уравнение Ах-Ву=1 существовало при заданных условиях д.б. А=В+1.

3. А > В, Х < У            Х – чётное число, У – нечётное число.

После преобразований

Далее вывод, как и в примере (1).

4. А > В, Х < У            Х – нечётное число, У – чётное число.

Результат, как и в примере (2).

5. А < В, Х > У            Х – чётное число, У – чётное число.

Нет решения, ибо это формула разности квадратов.

6. А < В, Х > У  Х – нечётное число, У – нечётное число.

Решение у такой формулы возможно.

7. А < В, Х > У            Х – чётное число, У – нечётное число.

 

Противоречий для существования данной формулы нет.

8. А < В, Х > У            Х – нечётное число, У – чётное число.

И окончательно.

Запрета на существование такого уравнения не вижу, но дальнейший анализ не в этой статье.

Вариант II.

9. А > В, Х < У            Х – чётное число, У – чётное число.

 

Уравнение разности квадратов - тогда решений не существует.

10. А > В, Х < У          Х – нечётное число, У – нечётное число.

Уравнение реальное - тогда решение есть.

11. А > В, Х < У          Х – чётное число, У – нечётное число.

 

Уравнение реальное.

Пример: 32-23=1

12. А > В, Х < У          Х – нечётное число, У – чётное число.

Решение существует.

13. А < В, Х > У          Х – чётное число, У – чётное число.

14. А < В, Х > У          Х – нечётное число, У – нечётное число.

15. А < В, Х > У          Х – чётное число, У – нечётное число.

16. А < В, Х > У          Х – нечётное число, У – чётное число.

                                                                 (а)

Для случаев 13, 14, 15, 16 итоговое уравнение одинаковое.

Рассмотрим эти четыре случая чуть подробнее.

, тогда

После подставим в уравнение (а) получим

, при начальном условии .

Тогда варианты 13, 14, 15, 16 – не верны.

Из рассмотренных выше задач, при всех вариантах начальных условий, - 8 задач решений в целых числах не имеют.

Для закрепления материала предлагаю рассмотреть два заведомо не имеющих решения уравнения.

Первый пример.

Пусть:        А - чётное число.

В - нечётное число.

А > В, Х > У, Х – чётное число, У – нечётное число.

Основное противоречие состоит в условии А > В, Х > У.

 

,

 что, конечно же, не возможно, т.к. левая часть всегда больше правой.

Второй пример.

Пусть:        А - нечётное число.

В - чётное число.

А > В, Х > У, Х – чётное число, У – нечётное число.

После соответствующих преобразований

,

что, конечно же, не возможно.


Гипотеза Биля (ГБ).

, где А, В, С взаимно простые числа и Х, У, Z > 2.

Рассмотрим 2 варианта:

- I      А - чётное число, В - нечётное число, С - нечётное число;

-        II      А - нечётное число, В - чётное число, С - нечётное число.

Строго говоря, чтобы полностью разобрать ГБ, надо рассмотреть все варианты решения уравнений.

Но дело в том, что новый метод исследования диофантовых уравнений говорит о том, что ГБ не верна, т.е. уравнение при некоторых сочетаниях А, В, С, Х, У, Z может иметь место. По этому будет рассмотрено лишь два примера, которые указывают на возможность решения уравнения.

Вариант I.

а) Пусть А > В > С, и Х < У < Z, и А - чётное число, В - нечётное число, С - нечётное число.

Составим функциональное уравнение.

 

Подразумевая систему функциональных уравнений, возьмём к = - 3

                        (1)

Возьмём обозначение 

Уравнение (1) примет вид уравнения Каталана

И именно из этого и следует наличие решений у уравнения ГБ.

Вариант II.

а) Пусть А > В > С, и Х < У < Z, где Х, У нечётные числа, А - нечётное число, В - чётное число, С - нечётное число.

Составим функциональное уравнение.

 

Решая относительно основания, получим

Проведу преобразование в показателях

После упрощения.

Вполне реальное уравнение, которое должно иметь место.

В настоящей работе представлен сравнительно небольшой анализ. Более серьёзным анализом займусь в зиму 2009-2010 годов.

И приведу один контр пример.

Заведомо противоречивое начальное условие – в примере (а) пусть

Х > У > Z.

Тогда в уравнении Каталана

,

И тогда не может иметь место знак равенства.

Т.е. задача с заведомо неверными начальными условиями исключается сразу.

Вот почему и есть основание верить в решения в целых числах у уравнения ГБ.


Заключение

Данному алгоритму на момент появления в интернете всего два месяца. Дитё.

Что можно нарешать за два месяца? А больше я себе не могу позволить заниматься не профилирующим предметом в моей трудовой деятельности.

Напоследок хочу коснуться одной практической проблемы при решении Диофантовых уравнений данным методом.

Сколько раз можно «бить» по уравнению, представленным алгоритмом?

Можно по отношению к конкретному уравнению теоретически на единицу меньше, чем число неизвестных в данном уравнении.

Первая стадия – убираем самое меньшее неизвестное. А на второй стадии уже надо знать разницу между оставшимся самым маленьким числом, и предстоящим. Или же не зная этой разницы, вводить параметр.

Почему это происходит?

На первой стадии мы наши неизвестные приблизим к началу числовой оси. Если самое наименьшее число чётное, то оно будет находиться на позиции «два», а если не чётное – то на позиции «один».

И чтобы ещё по уравнению пройтись представленным алгоритмом, надо все неизвестные «откатить» от начала числовой оси на несколько шагов. Приведу простейший пример.

Пусть есть уравнение Х3+У3+Z3=6903

И пусть каким - то одним нам известным способом мы узнаём, что Х, У, Z – нечётные и следуют подряд.

Сдвигаю неизвестные на «шаг» от начала оси.

У=2m+1,    при m=6    У=13

Z=2m-1,     при m=6    Z=11

при m=6    Х=15

Данный метод позволяет данные вычисления.


Часть 2

Подход к решению уравнений

                     (1)

                     (2)

Сейчас данные уравнения, насколько мне известно, решены для n=4.

Т.е. доказано наличие для каждого из уравнений бесконечного количества сочетаний натуральных чисел a, b, c, d удовлетворяющим условиям равенств уравнений (1), (2).

Причём доказательства основаны на компьютерном поиске данных чисел. Нашли компьютерным расчётом для n=4, отлично - теперь сделайте тоже самое для n=5 и т.д., т.к. даже для n=1000 в целом проблема не будет закрыта.

Мне кажется, что есть общий подход к доказательству утверждения о существовании равенств в уравнениях (1), (2) при любых n ® ¥.

Я сомневаюсь, что мои рассуждения сойдут за доказательства, но направление, может быть, окажется верным.

I.

Существует наличие сочетаний a, b, c, d на чётность и нечётность.

Разберу одну возможность, - пусть все числа a, b, c, d будут чётными.

А далее буду использовать алгоритм решения Диофантовых уравнений.

Составлю систему уравнений. Бумагу экономить не буду, - распишу подробно.


В этих уравнениях пусть 1 > 3 > 4 > 2 очевидное предположение.

Произведу в уравнениях системы сокращения на 2n и члены с 2 перенесу в правую часть уравнений, а члены с 3 – в левую.

Сокращением же на 2n от чётных значений a, b, c, d уравнения системы переведены в значения всего натурального ряда.


Далее используются формулы разности степеней.


+…..+=+…..+

+…..+=+…..+

+…..+=+…..+

+…..+=+…..+

+…..+=+…..+

Т.к. ,, система (4) примет вид:

p+…..+=f+…..+

p+…..+= f+…..+

p+…..+= f +…..+

p+…..+= f+…..+

p+…..+= f+…..+

Т.е. у каждого уравнения начальной системы уравнений (3) произведено понижение формы.

Ну и конечно же доказательство надо вести не от n к n-1, а наоборот, - от n=2 поэтапно к n ® ¥.

Уравнение (2) доказывается аналогичным образом.

 и т.д.

Мне в вышеизложенное и самому не на все 100% верится.

Поэтому я взываю к коллективному разуму.

Главное сомнение же вот в чём:

В таком разе все уравнения с нечётным числом членов решений в натуральных числах не будут иметь, ну или не так строго, могут не иметь.

Т.к. нет понижения формы у одного из членов уравнения.

Как, например, у уравнения (2) бесконечное число сочетаний натуральных чисел a, b, c, d существует, тогда, как у уравнения

таких сочетаний может и не быть.

И без компьютерного расчёта, хотя бы для n=3, не обойтись, и если взять мои утверждения, и очень убедительные контрдоводы кого-либо другого.


Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.