скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Види розподілу ймовірностей й оцінка його параметрів

                                      (3.18)

при цьому вирішенням вважається лише такий набір * = (*,*,..., *), що задовольняє (3.18), у якому кожне * дійсно залежить від х;

серед вирішень, що лежать усередині області {}, виділити крапки максимуму;

якщо система (3.18) не визначена, не розв'язна або якщо серед вирішень немає крапки максимуму усередині {}, то крапку максимуму варто шукати на границі області {}.

Приклад 3.2.1 Знайдемо методом максимальної правдоподібност оцінки параметрів а і b = σ2 нормального розподілу.

Відповідно до формули (3.15), функція правдоподібності

логарифмічна функція правдоподібності

Приватні похідні:

Перевіримо достатні умови максимуму функції In L у точці (а*, b*).

Знайдемо:


тому що ∆ >0, А<0, то крапка * = ,b*= ] є крапкою максимуму функції In L. Тому оцінки максимальної правдоподібності =х, =. Оцінки збіглися з оцінками методу моментів.

Приклад 3.2.2 Знайдемо методом максимальної правдоподібност оцінки параметрів а і b рівномірного на відрізку [а,b] розподіли. Відповідно до формули (3.15), функція правдоподібності

При першій умові система (3.18) не розв'язна, при другому - не визначена. Оцінки  і  варто шукати на границ області припустимих значень для а і b:

де а . Тоді умова (3.16) прийме вид:

Тому що функція L(a,b) =1/(b - а)" убуває при зростанні b и убуванні а, то її максимум на області {} досягається в точці .

Приклад 3.2.4 Випадковий розмір Х- число успіхів в одиничному випробуванні: Р(Х = х) = рх(1 – р) 1-х, х = 0,1; р - імовірність успіху в одиничному випробуванні. Знайдемо оцінку максимальної правдоподібності  розташовуючи вибіркою х1, х2..., хп, де хі - число успіхів у і-м випробуванні.

де т - число успіхів у л випробуваннях Бернуллі (таку ж оцінку можна одержати і методом моментів). Ця оцінка заможна, незміщена і, у чому неважко переконатися, ефективна.

Відзначена вище природність визначення оцінок максимально правдоподібності з умови (3.16) підкріплюється їхніми гарними властивостями. Якщо функція щільності fx (х, 9) (функція імовірності Р(Х = х, 9), якщо-дискретна) задовольняє досить загальним умовам регулярності, оцінка максимальної правдоподібності  має при великих я розподіл, близький до нормального з математичним чеканням, рівним , і дисперсією, рівної 1/[пІ()], де І() визначається співвідношенням (3.9), є заможної, асимптично несумісної і асимптично ефективної; більш того, якщо існує ефективна оцінка параметра, вона буде єдиним вирішенням рівняння максимальної правдоподібності.

Крім описаних методів оцінювання параметрів існує ряд інших, наприклад метод найменших квадратів, відповідно до котрого

оцінка  параметра  знаходиться з умови:

                                       (3.19)

Звернемо увагу на те, що математичного чекання нормального розподілу з відомим значенням дисперсії умова (3.19) ідентично умові методу максимальної правдоподібності (3.16).

В останні роки розвиваються так називані робастні, або стійкі, методи оцінювання, що дозволяють знаходити оцінки, хоча і є не найкращими в рамках передбачуваного закону розподілу, але має досить стійкі властивості при відхиленні реального закону від передбачуваного.

3.2 Поняття інтервальної оцінки. Інтервальні оцінки параметрів нормального розподілу

Обчислена на основі вибірки оцінка   лише наближенням до невідомого значення параметра  навіть у тому випадку, коли ця оцінка заможна, незміщена й ефективна. Виникає питання: не можна чи зазначити таке А, для якого з заздалегідь заданої близької до одиниці імовірністю 1 - α гарантувалося б виконання нерівності: |-| < ∆, або інакше, для котрого

                                 (3.2.1)

Якщо таке А існує, то інтервал (-∆, +∆) називають іньервально оцінкою параметра 9, або довірчим інтервалом; -∆,  + ∆ — нижньо верхньої довірчими границями; ∆ — помилкою оцінки , 1-α — надійністю інтервально оцінки, або довірчою імовірністю. Вибір довірчої імовірност визначається конкретними умовами; звичайно використовуються значення 1 - α, рівні 0,90; 0,95; 0,99.

Оцінка , будучи функцією випадкової вибірки, є випадковим розміром, ∆ також випадкова: її значення залежить від імовірності 1 - α і, як правило, від вибірки. Тому довірчий нтервал випадковий і вираження (3.2.1) варто читати так: «Інтервал (-∆, +∆ накриє параметр  з імовірністю 1 — α», а не так: «Параметр  потрапить у інтервал (-∆, +∆ з імовірністю 1 - α».

У формулі (3.2.1) границі довірчого інтервалу симетричні щодо крапкової оцінки. Однак не завжди вдасться побудувати інтервал, що волод такою властивістю. Для одержання довірчого інтервала найменшої довжини при заданому об'ємі виборки п і заданої довірчої імовірності 1 - а в якості оцінки  параметра  варто брати ефективну або асимптотично ефективну оцінку.

Існує два підходи до побудови довірчих інтервалів.

Перший підхід, якщо його вдасться реалізувати, дозволяє будувати довірчі інтервали при кожному кінцевому об'ємі вибірки п. Он заснований на доборі такої функції ψ (,), називаної надалі статистикою, щоб:

її закон розподілу був відомий і не залежав від ;

функція ψ(,) була безупинної і строго монотонної по .

Задавшись довірчою імовірністю 1- α, знаходять двосторонн критичні границі  , що відповідають мовірності а. Тоді з імовірністю 1 — α виконується нерівність І

                                          (3.2.2)

Вирішивши цю нерівність щодо 0, знаходять границі довірчого нтервалу для . Якщо щільність розподілу статистики в ψ(,) симетрична щодо осі 0у, то довірчий інтервал симетричний щодо .

Другий підхід, що одержав назву асимптотичного підходу, більш універсальний; однак він використовує асимптотичні властивості крапкових оцінок тому придатний лише при досить великих об'ємах вибірки.

Розглянемо перший підхід на прикладах довірчого оцінювання параметрів нормального розподілу.

Інтервальна оцінка математичного чекання при відомій дисперсії. Отже, Х~ N (а, σ), причому значення параметра а не відомо, а значення дисперсії а2 відомо.

При Х~ N (а, σ) ефективною оцінкою параметра а X, при цьому X ~ N(a,σ а/√п). Статистика  має розподіл N(0;1) незалежно від значення параметра а і як функція параметра а безупинна строго монотонна. Отже, з обліком нерівності (3.2.2) і симетричност двосторонніх критичних границь розподілу y(0; 1) будемо мати:

Вирішуючи нерівність  щодо а, одержимо, що з імовірністю 1 - α виконується нерівність

                                     (3.2.3)

при цьому

                                                (3.2.4)

що відповідає результату (6.1.23); число иа знаходять з умови Ф(uа) = (1-α)/2.

Зауваження. Якщо п велике, оцінку (3.2.3) можна використовувати і при відсутності нормального розподілу розміру X, тому що в силу наслідку з центральної граничної теореми при випадковій вибірц великого об'єму п


Зокрема, якщо Х = ц, де ц - випадкове число успіхів у великому числі п випробувань Бернуллі, то

і з імовірністю ≈ 1 - α для імовірності р успіху в одиничному випробуванні виконується нерівність

                           (3.2.5)

Замінюючи значення p і q=1-pn лівій і правій частинах нерівності (3.2.4) їхніми оцінками   , що припустимо при великому п, одержимо наближений довірчий інтервал для імовірності р:

                                     (3.2.6)

Приклад 3.2.1 Фірма комунального господарства бажає на основ вибірки оцінити середню квартплату за квартири визначеного типу з надійністю не менше 99% і погрішністю, меншої 10 д.е. Припускаючи, що квартплата ма нормальний розподіл із середнім квадратичнім відхиленням, що не перевищує 35 д.е., знайдіть мінімальний об’єм вибірки.

Вирішення. За умовою потрібно знайти таке п, при якому , де а і Х- генеральна вибіркова середні.

Прирівнявши 1 - α = 0,99, по табл. П. 4.1 знайдемо число иа, при якому Ф() = (1 - α)/2 = 0,495; и0.01= 2,6. При ∆ =10 і α = 35 з формули (3.2.4) одержимо п == 82,81. Але тому що з ростом 1 - α і зменшенням ∆ зростає п, то п > 82,81 і птin = 83 (звичайно, при зменшенн верхньої границі для про буде зменшуватися і птin). Т

Інтервальна оцінка математичного чекання при невідомій дисперсії. Отже, Х~ N (а, о), причому числові значення ні а, н α 2 не відомі. По випадковій вибірці знайдемо ефективну оцінку параметра а:  і оцінку  параметра σ2.

Побудова інтервальної оцінки для а засновано на статистику , що при випадковій вибірц з генеральної сукупності Х~ N (а; σ) має розподіл Стьюдента з (п - 1) ступенем волі незалежно від значення параметра а і як функція параметра а безупинна і строго монотонна.

З обліком нерівності (3.2.2) і симетричності двосторонніх критичних границь розподілу Стьюдента будемо мати:

Вирішуючи нерівність -ta відносно а, одержимо, що з імовірністю 1 - α виконується нерівність

                                     (3.2.7)

і помилка оцінки X при невідомому значенні параметра о2

                                        (3.2.8)

де число знаходять по табл. П. 4.2 при k=n-1 пр = α.

Зауваження. При k=п-1>30 випадковий розмір t(k) ма розподіл, близьке до N (0; 1), тому з імовірністю ≈ 1 - α

                      (3.2.9)

Приклад 3.2.2 Для галузі, що включає 1200 фірм, складен випадкова вибірка з 19 фірм. По вибірці опинилося, що у фірмі в середньому працюють 77,5 чоловік при середньому квадратичному відхиленні s = 25 чоловік. Користуючись 95%-нім довірчим інтервалом, оціните середнє число працюючих у фірмі по всій галузі і загальне число працюючих у галузі. Передбачається, що кількість працівників фірми має нормальний розподіл.

Вирішення. При k = n -1 = 18 і р = α = 1 - 0,95 = 0,05 знайдемо в табл. П. 4.2 t005 = 2,10. Довірчий інтервал (3.2.7) прийме вид: (65,5; 89,5). З імовірністю 95% можна стверджувати, що цей інтервал накриє середнє число працюючих у фірмі по всій галузі. Тоді довірчий інтервал для числа працюючих у галузі в цілому такий: (1200-65,5; 1200-89,5). Т

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.