скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Клеточные пространства

(мы считаем, что Ra  R при a < b: ). Приведем другое, более простое описание множества e (). Напомним, что диаграмма Юнга набора  - это фигура, которая рисуется на клетчатой бумаге, как показано на рис.4а (столбцы имеют длины ).

Число клеток диаграммы Юнга равно . Можно считать, что клетки пространства G (n,k) отвечают диаграммам Юнга, вмещающимся в прямоугольник k (n - k) (рис.4а). Рассмотрим диаграмму Юнга набора и расположим ее, как показано на рис.4б. Толстая линия на этом рисунке представляет собой график некоторой неубывающей функции, и множество e () задается условием dim (R) =  (m). Ввиду наличия такого простого описания, множество e () обозначают иногда через е (), где  - обозначение для диаграммы Юнга набора (). Еще раз заметим, что размерность клетки е () равна числу клеток диаграммы.

Лемма. Множество e () гомеоморфно R.

Доказательство. Расчленим диаграмму Юнга набора (), как показано на рис.4в. Поставим в клетках вдоль косых линий единицы, в Заштрихованные клетки - произвольные числа и в остальные места - нули. Получится kn-матрица, строки которой составляют базис некоторого k-мерного подпространства пространства R. Легко понять, что это подпространство принадлежит e () и что всякое подпространство, принадлежащее e (), обладает единственным базисом указанного вида. Получаем параметризацию клетки e () наборами из  чисел (числа в заштрихованных клетках).

Рис.4

На самом деле верно больше: множества e () составляют клеточное разбиение пространства G (n, k). Для доказательства нужно построить характеристические отображения, т.е. продолжить построенные гомеоморфизмы IntR  e () до непрерывных отображений G (n, k), отображающих сферу  в объединение клеток меньших размерностей.

Замечательное свойство шубертовских клеток состоит в том, что при естественных вложениях G (n, k) в G (n+1, k) ив G (n+1, k+1) клетка e () гомеоморфно накладывается на клетку того же наименования. Следовательно, пространство G (,k) разбивается на клетки Шуберта, отвечающие диаграммам Юнга, содержащимся в горизонтальной полуполосе высоты k, а пространство G (,) разбивается на клетки, отвечающие всем без исключения диаграммам Юнга. Во всех случаях размерности клеток равны числам клеток диаграмм Юнга.

Комплексные и кватернионные аналоги шубертовских клеток очевидны; разумеется, размерности комплексных и кватернионных аналогов клеток Шуберта соответственно в 2 и 4 раза превосходят числа клеток соответствующих диаграмм Юнга.

2.4 Многообразия флагов

Многообразия флагов имеют естественное клеточное разбиение, обобщающее шубертовское разбиение многообразий Грассмана. Это разбиение и его клетки также называются шубертовскими. Опишем разбиение в вещественном случае (комплексный и кватернионный случаи отличаются только удвоением и учетверением размерностей клеток).

Шубертовские клетки многообразия флагов характеризуются наборами размерностей пересечений VR. Числа , однако, должны удовлетворять набору довольно неудобных условий, и мы предпочтем следующее, более рациональное описание клеток Шуберта.

Клетки пространства F (n; ) отвечают наборам  целых чисел, принимающих значения 1,…, s + 1, причем ровно  из этих чисел равны j (j=1,…, s+1; мы считаем, что k=0 и k=n). Клетка е [], отвечающая набору (), состоит из флагов VV, у которых

dim{

(мы считаем, что V=0 и V есть все пространство R) или, иначе,

dim (V R ) = card {р ≤ i│kp ≤ j }.

Размерность клетки е [] равна числу пар (i, j), для которых i<j, >.

В частности, многообразие F (n; 1,…,n-1) полных флагов разбито на n! клеток, отвечающих обыкновенным перестановкам чисел 1,…, n, причем размерность клетки равна числу инверсий в перестановке.

Если многообразие флагов есть многообразие Грассмана G (n, k), то s = 1 и набор состоит из k единиц и n-k двоек. Построим по этому набору n-звенную ломаную на плоскости, начинающуюся в точке (0, k) и кончающуюся в точке (n-k, 0). Все звенья ломаной имеют длину 1, причем i-e звено направлено вниз, если  = 1, и вправо, если = 2. Эта ломаная ограничивает (вместе с координатными осями) некоторую диаграмму Юнга , и легко понять, что е [] = е ().

Заметим в заключение, что клетки е [] (и их комплексные и кватернионные аналоги) могут быть описаны чисто групповым образом: это - орбиты группы нижних треугольных nn-матриц с единицами на диагонали, естественным образом действующей в многообразии флагов. Именно, клетка е [] есть орбита флага, i-е пространство которого порождено координатными векторами, номера р которых удовлетворяют неравенству < i.

2.5 Классические поверхности

Клеточные разбиения поверхностей S2 и RP2 нами уже построены. Клеточные разбиения остальных поверхностей без края автоматически получаются при склеивании этих поверхностей из многоугольников: двумерная клетка получается из

внутренности многоугольника, одномерные клетки - из его (открытых) ребер, нульмерные клетки - из его вершин. Каноническое клеточное разбиение каждой классической поверхности имеет одну двумерную и одну нульмерную клетку. Кроме того, сфера с g ручками имеет 2g одномерных клеток (см. рис.5), проективная плоскость с g ручками имеет 2g +1одномерную клетку и бутылка Клейна с g ручками имеет 2g +2 одномерных клеток.

Рис.5


3. Гомотопические свойства клеточных пространств

3.1 Теорема Борсука о продолжении гомотопий

Определение. Пара (X, А) называется парой Борсука (или корасслоением), если для любого пространства Y и любого непрерывного отображения F: ХY всякая гомотопия ft: АY, такая, что f = F│ А, может быть продолжена до гомотопий Ft: ХY, у которой F0 = F.

Теорема Борсука. Если X - клеточное пространство и А - его клеточное подпространство, то (X, А) - пара Борсука.

Доказательство. Нам даны отображения Ф: А I Y (гомотопия ft) и F: X 0 Y, причем F │= Ф│. Продолжить гомотопию ft до гомотопий Ft - это значит продолжить отображение F до отображения F’: XI  Y, такого, что F’ │= Ф. (Продолжение мы произведем индуктивно по размерности клеток пространства X, не входящих в А. Начальным шагом индукции служит продолжение отображения Ф на (AX) I:

F’ (x, t) ={

Допустим теперь, что отображение F' уже определено на (A  X)  I. Возьмем произвольную (n+ 1) - мерную клетку e Х - A. По предположению, F' задано на множестве () I, так как граница = клетки содержится в X по определению клеточного пространства. Пусть f: D X - характеристическое отображение, соответствующее клетке . Нам надо продолжить F' на внутренность "цилиндра" f (D) I с его "стенки" f (S) I и "дна" f (D)  0. Но из определения клеточного пространства ясно, что это все равно, что продолжить отображение  F’f: (SI)  (D 0) Y до непрерывного отображения ': D I Y.

Пусть : D I  (SI)  (D 0) - проектирование цилиндра D I из точки, лежащей вне цилиндра вблизи верхнего основания D I (см. Рис.6); это отображение тождественно на (SI)  (D 0). Отображение ' мы определяем как композицию

D I (SI)  (D 0) Y.

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.