скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля

Для обработки трубчатых заготовок по схеме «раздача» индуктор вставляют в заготовку, а саму заготовку - внутрь разъемной матрицы из металла или пластика. По этой схеме производят отбортовку, получают кольцевые и продольные рифты и зиги, осуществляют вырубку, чеканку рисунка и др. Сборочные операции по схеме «раздача» не требуют применения специального устройства и инструмента, так как обычно производится сборка двух трубчатых деталей сращиванием труб, запрессовка труб во втулки, корпуса или диски. Применение МИОМ для сборочных операций значительно снижает трудоемкость сборки, позволяет отказаться от применения резьбы, склеивания, закатки и т.д. Минимальный диаметр труб, для которых возможна операция раздачи с помощью индуктора, составляет 30-40 мм.

В значительной мере основы теории, технологии и оборудования импульсных методов штамповки базируются на результатах работ отечественных и зарубежных школ, к которым принадлежат   О.Д. Антоненков, А.М. Балтаханов, И.В. Белый, Ш.У. Галиев,    В.А. Глущенков, С.Ф. Головащенко, А.А. Есин, Е.Г. Иванов, В.Н. Кислоокий, С.М. Колесников, А.В. Колодяжный, А.Д. Комаров, В.Д. Кухарь,   В.Я. Мазуровский, В.С. Мамутов, В.М. Михайлов, Е.А. Попов, Ю.А. Попов, А.К. Талалаев, Л.Т. Хименко, В.Н. Чачин, Н.Е. Проскуряков,    В.Н. Самохвалов, Г.А. Шнеерсон, Б.А. Щеглов, В.Б. Юдаев, С.П. Яковлев, H. Dietz, H.P. Furth, J. Jablonski, H. Lippman, R.H. Post, H.P. Waniek, R. Winkler и другие.

Исторически сложилось, что разработка математических моделей шла по двум направлениям:

1)         достаточно полное описание электродинамических процессов без учета движения заготовки и индуктора;

2)         решение задач механики МИОМ с использованием экспериментально установленных сил, действующих на индуктор и заготовку.

Ниже приведен обзор наиболее известных работ, посвященных обоим направлениям.

 

1.1 Математические модели электродинамических процессов

При расчете электромагнитных параметров процесса МИОМ используют два основных определения пондеромоторных сил [34]:

- силы взаимодействия тока, протекающего по обрабатываемой заготовке, с магнитным полем индуктора;

- силы взаимодействия двух токов, один из которых протекает в индукторе, а второй в обрабатываемой заготовке.

Эти формулировки не являются противоречивыми по физической сущности процесса, но описываются несколько различающимися аналитическими выражениями, что определяет разницу в порядке и методике анализа процесса и является одной из причин возникновения различных методик расчета параметров в индуктивно-связанных системах. Первая формулировка позволяет свести понимание процесса к аналогии «магнитного давления» (методы теории поля), а вторая может дать усредненные решения, не зависящие от характеристик магнитного поля, возникающего в системе индуктор-заготовка, т.е. позволяет определить интегральные характеристики разрядного контура, но не позволяет описать картину силового поля (методы теории цепей). Использование методов теории цепей (схемы замещения с сосредоточенными электрическими параметрами) [41,47] в некоторых случаях позволяет получить замкнутые решения для тока [26]. Использование методов теории поля позволяет рассчитать переходный процесс в разрядном контуре и диффузию поля в массивные проводники системы, на основе которых исследуется распределение электромагнитных сил в элементах системы «индуктор-заготовка» [37].Математическая модель сложных электромеханических и тепловых процессов в системе «индуктор-заготовка» может быть составлена (в ее электрической части) относительно плотностей токов [39]. Преимущество этого подхода по сравнению со случаем составления математической модели, например, для вектора магнитной индукции или магнитного потенциала, заключается в том, что вектор плотности тока локализован в проводящей среде в то время как другие векторы электромагнитного поля сосредоточены в проводящей среде и в окружающем пространстве. Поэтому формулировка задачи для плотности тока исключает необходимость дискретизации относительно большого пространства, занятого электромагнитным полем.

Задачи расчета электромагнитных параметров индуктивно-связанных систем и, в особенности, распределения тока в них при магнитно-импульсной обработке металлов наиболее подробно рассмотрены в работе [8], где электромагнитные параметры определялись в каждом конкретном случае решением системы интегро-дифференциальных уравнений, описывающих распределение тока в индукторе и заготовке, изменение во времени электропроводности материалов и размеров системы.

Ряд авторов [51] рассматривают более простую задачу расчета электромагнитных параметров индукторных систем относительно процесса в целом и используют допущения, упрощающие расчеты. Наиболее типичным является допущение о резко выраженном поверхностном эффекте. Решение задачи приведено к интегральным выражениям. Однако строгий расчет магнитного поля при сложной геометрии системы «индуктор-заготовка», даже при допущении о резко выраженном поверхностном эффекте, связан с большими математическими трудностями. Поэтому в расчета сложных индуктивно-связанных систем нашли применение, в основном, приближенные методы расчета, наиболее распространенным из которых является метод «сшивания» [52]. Однако, используемое в этом случае при выводе формул допущение о бесконечно большой высоте витка индуктора и относительной малости рабочего зазора не всегда приемлемо для реальных конструкций индукторных систем при МИОМ.

Для расчета параметров одновитковых осесимметричных систем с конечной высотой витка при относительно большом рабочем зазоре, автором работы [12] предложен метод «сворачивания», заключающийся в том, что первоначальный расчет параметров системы «индуктор-заготовка» производится в приближении параллельной картины магнитного поля с учетом краевых эффектов и постоянства магнитного потока, а затем производится ее сворачивание в реальную систему с конечным радиусом.

Для расчета многовитковых индукторных систем представляется перспективным метод, при котором реальный индуктор заменяется индуктором с равномерным распределением плотности тока [24], а краевые эффекты в области между витками учитывают добавочным зазором, увеличивающим исходный геометрический зазор до эквивалентного.

1.2 Математическое моделирование формоизменения заготовки в процессах МИОМ

Из-за сложности и ресурсоемкости решения задачи электродинамики для определения пондеромоторных сил в работах [21, 36, 40], предложено заменять пондеромоторные силы давлением ИМП:

    (1.1)

где  = ++- эквивалентный зазор между индуктором и заготовкой, учитывающий проникновение магнитного поля в металл индуктора , в металл заготовки , а также геометрический зазор между индуктором и заготовкой ; - текущее перемещение заготовки; - коэффициент затухания;  - круговая скорость.

Использование выражения (1.1) позволяет отказаться от совместного решения электромеханических уравнений и свести расчет процессов МИОМ к решению уравнений механики деформируемого твердого тела при заданной внешней нагрузке, параметры которой должны определяться из электрических характеристик системы «установка-индуктор-заготовка». Однако этот подход приводит к большим погрешностям в определении усилий, действующих на индуктор и заготовку и фактически нивелирует разницу между МИОМ и другими высокоскоростными методами, такими как штамповка взрывом, и не отражает основной особенности напряженно-деформированного состояния заготовки, на поверхности которой напряжения равны нулю.

Б.А. Щеглов в работе [53] рассмотрел осесимметричное пластическое течение тонколистовой заготовки из жесткопластического несжимаемого металла, обладающего изотропным упрочнением и вязкостью. Рассмотрен процесс пластического течения трубной заготовки после динамического воздействия. Приводится алгоритм расчета динамических и кинематических параметров процесса. Увеличение вязкости приводит к возрастанию динамических напряжений в заготовке и снижению скоростей деформаций и самих деформаций. Для динамического формоизменения металлов, обладающих большой вязкостью, необходимы более высокие усилия и энергетические затраты.

В работе [25] при раздаче цилиндрических и конических оболочек показано, что величина минимальной напряженности поля при отсутствии его просачивания, для перехода материала в пластическое состояние зависит только от геометрических размеров и механических свойств материала. Напряженное состояние исследовано без учета упрочнения материала и сил инерции.

Задача пластического деформирования тонкостенной конической трубы рассмотрена в работе [43]. В течении времени  на заготовку действует постоянное равномерное внутреннее давление P , а затем оно снимается и дальнейшее движение происходит за счет накопленной кинетической энергии. Концы трубы свободно опираются по контуру, материал трубы жесткопластический. Показано, что задача деформировании конической трубы может быть сведена к задаче о деформировании цилиндрической трубы, что и было установлено Е.Г. Ивановым [18].

Осесимметричная безмоментная раздача конической заготовки ИМП при допущениях малости перемещения вдоль образующей, по сравнению с перемещениями по нормам к поверхности [20], сводится также к задаче о раздаче тонкостенной цилиндрической трубы.

Исследование процессов магнитно-импульсной штамповки значительно усложняется, если в процессе формоизменения образующая заготовки претерпевает изгиб и если поперечное сечение принимает форму отличную от окружности. Экспериментальному исследованию этих процессов посвящен ряд работ [9, 10, 11, 13, 32], к основным результатам которых можно отнести определение технологических возможностей процесса, а также изучение характера течения металла в процессе формоизменения.

Теоретическое исследование этих процессов с позиции механики деформируемого твердого тела было выполнено в работах [6, 16, 23, 30, 32, 35, 54, 55]. Используя экспериментальные данные о характере формоизменения, а также соотношения безмоментной теории оболочек, в работах [30, 32, 54, 55] проведено исследование напряженно-деформируемого состояния в течении процесса формоизменения, определена работа пластического деформирования, обоснован выбор геометрических размеров обрабатываемых деталей и энергия заряда для осуществления операций отбортовки концов труб и т.д.

Приближенный учет изгибающих моментов в процессах МИОМ выполнен в работе [17], при этом условия равенства работ внешних и внутренних сил задачи изгибного деформирования сведены к задачам об одноосном напряженном состоянии. Основным недостатком этой работ является приближенная оценка напряженно-деформированного состояния, возникающего в заготовке.

Использование соотношений моментной теории оболочек к анализу процесса поперечной рифтовки труб дано в работе [6]. В данной постановке задача сводится к решению системы дифференциальных уравнений в частных производных, которая решается методом конечных разностей. Такой подход к анализу динамики тонких упругопластических осесимметричных оболочек был развит в работах [5, 27]. Особенностью данных решений является то, что они применимы только для анализа осесимметричных процессов, для оболочек с плавными очертаниями и требуют создания устойчивых расчетных схем.

Перспективным является использование метода конечного элемента к анализу процессов МИОМ. Присущие ему принципы построения решения позволяют эффективно использовать вычислительную технику при поэтапных исследованиях процессов пластического формоизменения и достаточно просто учитывать геометрическую и физическую неоднородность заготовки, а также неравномерность приложения нагрузки.

В работе [23] предлагается алгоритм исследования переходных процессов деформирования упруго-пластических осесимметричных нетонких оболочек, построенный на основе модифицированного метода конечных элементов [22]. Конечно-элементная дискретизация исследуемой области сводит решение задачи к решению системы дифференциальных уравнений движения, интегрирование которых по времени проводится численно по явной разностной схеме. Такой подход позволяет определить распределение напряжений, деформаций и перемещений в произвольной точке заготовки в любой момент времени. Предложенный алгоритм иллюстрируется на примере решения задачи об отбортовке отверстия в плоской заготовке. Точность полученного решения подтверждается экспериментально. Следует отметить, что упруго-пластический подход наиболее применим к анализу процессов, в которых величина пластических деформаций соизмерима с упругими. В противном случае для уточнения решения используется модель жестко-пластического тела, как это сделано, например, в работе [35], авторы которой использовали метод конечного элемента при исследовании процессов магнитно-импульсной штамповки, протекающих в условиях плоской деформации. В этом случае в качестве искомых функций выступают компоненты узловых скоростей и величины средних напряжений.

Оригинальным является представление узловых скоростей в виде произведения двух функций, одна из которых является функцией времени, постоянной для всей пластической области [33, 49]. Это позволяет отказаться от решения системы дифференциальных уравнений, а свести задачу к системе алгебраических уравнений. Однако использование в данной работе метода множителя Лагранжа для учета условия несжимаемости приводит к трудностям при использовании стандартных приемов при решении систем уравнений, записанных в матричной форме, за счет появления нулей на главной диагонали матрицы системы.

1.3 Математическое моделирование электромеханических процессов при магнитно-импульсной обработки металлов

В случае переменной величины рабочего зазора, например, в процессе формоизменения заготовки, импульсное магнитное поле в системе «индуктор-заготовка» неоднородно, что резко усложняет расчет его величины и распределения по поверхности заготовки при создании инженерных методик расчета.

Кроме того, изменение размеров заготовки в процессе деформирования ведет к изменению индуктивности системы «индуктор-заготовка» и, следовательно, к изменению частоты тока, а увеличение зазора между индуктором и заготовкой приводит к уменьшению давления. При этом за счет пересечения заготовкой магнитных силовых линий в ней и индукторе возникают дополнительные токи, которые могут оказывают влияние на величину давления ИМП.

Учесть эти факторы можно, если рассматривать процесс магнитно-импульсной обработки как электромеханический, т.е. процесс деформирования описывать системой электрических уравнений, полученных на основе теории цепей, совместно с уравнениями движения [44, 56]. Но так как методы теории цепей позволяют исследовать только интегральные параметры системы, то с их помощью трудно получить достоверную картину напряженно-деформированного состояния индуктора и заготовки, однако, как будет показано ниже, индуктор и заготовку можно представить как совокупность параллельно соединенных контуров с токами и исследовать их силовое взаимодействие друг с другом.

Изучению процессов раздачи и обжима тонкостенных цилиндрических заготовок посвящено большое количество работ [60,14]. Среди этих работ следует отметить работы Иванова Е.Г. [14], который, используя решения безразмерных уравнений движения с широким диапазоном варьирования входных параметров, получил приближенные аналитические выражения, позволяющие судить о степени влияния того или иного параметра на величину деформации заготовки и определять параметры МИУ по заданному формоизменению. Однако следует заметить, что универсальность полученных решений ограничена видом аппроксимирующей кривой , которая выбрана в виде .

Основной недостаток описанных моделей состоит в априорном задании усилий в виде давления, изменяющегося со временем по гармоническому закону, тогда как в действительности индуктор и заготовка находится под действием объемных пондеромоторных сил.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.