скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Некоторые задачи оптимизации в экономике

Во – вторых, решение задачи потребительского выбора не изменится, если все цены и доход увеличиваются (уменьшаются) в одно и то же число раз λ . (λ>0)

Это равнозначно умножению на положительное число λ обеих частей бюджетного ограничения p1x1+p2x2Q, что даёт неравенство, эквивалентное исходному. Поскольку ни цены, ни доход Q не входят в функцию полезности, задача остаётся той же, что и первоначально.

Если на каком – то потребительском наборе (x1,x2) бюджетное ограничение p1x1+p2x2Q будет выполнятся в виде строгого неравенства, то мы можем увеличить потребление какого – либо из продуктов и тем самым увеличить функцию полезности. Следовательно, набор , х), максимизирующий функцию полезности, должен обращать бюджетное ограничение в равенство, т.е. p1х+p2х=Q.

Графически это означает, что решение , х) задачи потребительского выбора должно лежать на бюджетной прямой, которая проходит через точки пересечения с осями координат, где весь доход тратиться на один продукт: (0, ) и (,0).

Итак, задачу потребительского выбора можно заменить задачей на условный экстремум (ибо решение , х) этих двух задач одно и то же)

u(x1,x2)→max

                       при условии p1x1+p2x2=Q.

Для решения этой задачи применим метод Лагранжа. Выписываем функцию Лагранжа L(x1,x2, λ)= u(x1,x2)+ λ (p1x1+p2x2-Q), находим её частные производные по переменным x1,x2 и λ и приравниваем к нулю:

                                            L= u+λ p1=0,

                                              L= u +λ p2 =0,

L=p1x1+p2x2-Q =0.

Исключив из полученной системы неизвестную λ, получим систему двух уравнений с двумя неизвестными x1, и x2

                                            =,

p1x1+p2x2=Q .

Решение , х) этой системы есть критическая точка функции Лагранжа. Подставив решение , х) в левую часть равенства

=,

получим, что в точке , х) отношение  предельных полезностей u, х) и u, х) продуктов равно отношению рыночных цен p1 и p2 на эти продукты:

=.                                          (5.1)

В связи с тем, что отношение равно предельной норме замены первого продукта вторым в точке локального рыночного равновесия , х), из (5.1) следует, что эта предельная норма равна отношению рыночных цен  на продукты. Приведённый результат играет важную роль в экономической теории.

Геометрически решение , х) можно интерпретировать как точку касания линии безразличия функции полезности u(x1,x2) с бюджетной прямой  p1x1+p2x2=Q. Это определяется тем, что отношение =- показывает тангенс угла наклона линии уровня функции полезности, а отношение - представляет тангенс угла наклона бюджетной прямой. Поскольку в точке потребительского выбора они равны, в этой точке происходит касание данных двух линий.

Решим задачу потребительского выбора.

Оптимальный набор потребителя составляет 6 ед. продукта х1 и 8 ед. продукта х2. Определите цены потребляемых благ, если известно, что доход потребителя равен 240 руб. Функция полезности потребителя имеет вид: u(x1,x2)=xx.

Решение. Следуя принципу решения, получаем систему уравнений:

=,                          =,                   =,

p1x1+p2x2=240.                p1x1+p2x2=240 .                  p1x1+p2x2=240 .

Подставив, вместо х1 6 ед., вместо х28 ед., получим: p1=10руб., p2=22.5руб.

3)    Общая модель потребительского выбора.

Была рассмотрена модель потребительского выбора с двумя продуктов и её решение с помощью метода множителей Лагранжа. Сейчас рассмотрим свойства задачи потребительского выбора с произвольным числом продуктов и целевой функцией общего вида.

Пусть задана целевая функция предпочтения потребителя u(x1,x2, …,хn), где хi- количество i-го продукта, вектор цен pi=(p1,p2,…,pn) и доход Q. Записав бюджетное ограничение и ограничение на неотрицательность, получаем задачу

u(x)→max                                               (5.2)

                                     при условии pxQ, x≥0

(здесь x=(x1,x2, …,хn), p=(p1,p2,…,pn), px=( p1x1+…+pnxn)).

Будем считать, что неотрицательность переменных обеспечивается свойствами целевой функции и бюджетного ограничения. В этом случае можно записать функцию Лагранжа и исследовать её на безусловный экстремум. 

L(x, λ )= u(x)+ λ ( px-Q).

 Необходимое условие экстремума равенство нулю частных производных: L=u+ λpi=0 для всех i[1;n] и L=px-Q=0. Отсюда вытекает, что для всех i в точке х рыночного равновесия выполняется равенство

                                               (5.3)

которое получается после перенесения вторых слагаемых, необходимых условий в правую часть и делением i-го равенства на j-ое. Итак, в точке оптимума отношение предельных полезностей любых двух продуктов равно отношению их рыночных цен. Равенство (5.3) можно переписать и в другой форме:

                                                (5.4)

Это означает, что полезность, приходящаяся на единицу денежных затрат, в точке оптимума одинаковая по всем видам благ. Если бы это было не так, то по крайней мере одну денежную единицу можно было бы перераспределить так, чтобы выросло благосостояние (значение функции полезности) потребителя. Если для некоторых i, j   

,

то некоторое количество денег можно было бы перераспределить от i –го продукта к j-му, увеличив уровень благосостояния.

4)                     Модель Стоуна. Выведем теперь функцию спроса для конкретной функции потребительского предпочтения, называемой функцией Р.Стоуна. Эта функция имеет вид

u(x)=max                               (5.5)

Здесь аi – минимально необходимое количество i-го продукта, которое приобретается в любом случае и не является предметом выбора. Для того чтобы набор {ai} мог быть полностью приобретен, необходимо, чтобы доход Q был больше - количество денег, необходимого для покупки этого набора. Коэффициенты степени аi>0 характеризуют относительную «ценность» продуктов для потребителя.

Добавив к целевой функции (5.5) бюджетные ограничения ≤Q, хi≥0, получим задачу, называемую моделью Стоуна. Как было сказано на стр. 36, бюджетное ограничение должно обращаться в равенство. Составим функцию Лагранжа L(x1,x2, …,хn, λ )= u(x)+ λ (p1x1+…+pnxn Q).

Найдём частные производные функции Лагранжа и приравняем их к нулю                  L= a1(x1-a1) ∙(x2-a2) ∙…∙(xn-an) + λp1.

Аналогично получаем остальные частные производные. Т.е.

L= + λ pi=0, где i=.

Выразив xi, получим  xi=ai-.                                                                   (5.6)

L=-Q=0. Умножив каждое из равенств (5.6) на λpi и просуммировав их по i, имеем

=0                            (5.7).

Поскольку в точке оптимума бюджетное ограничение выполняется как равенство, заменим на Q, получим =0. Поделив на λ, получим =-(Q-). Откуда . Полученное выражение подставляем в равенство (5.6)

xi=ai+                                         (5.8)

Т.е. вначале приобретается минимально необходимое количество продукта ai. Затем рассчитывается сумма денег, остающаяся после этого, которая распределяется пропорционально «весам» важности i. Разделив количество денег на цену pi , получаем дополнительно приобретаемое, сверх минимума, количество i- продукта и добавляем его к аi .                                                   [1]
Заключение

При написании работы мною была изучена литература по данной теме. Были рассмотрены математические модели в экономике, повторены некоторые понятия функций нескольких переменных, необходимых для изучения оптимизационных задач. Также была изучена постановка задач математического программирования и методы их решения. Был рассмотрен симплексный метод, который позволяет решить любую задачу линейного программирования. Для ЗЛП была рассмотрена симметричная взаимодвойственная задача и метод её решения с использованием теорем двойственности. Для задачи нелинейного программирования был рассмотрен геометрический метод решения. А также рассмотрены задачи на условный экстремум.

 В работе приводится задача потребительского выбора, решение которой сводится к решению задач на условный экстремум. Также рассмотрен частный случай задачи потребительского выбора - модель Стоуна.

Мною были решены задачи по каждому виду рассмотренных оптимизационных задач. Это ЗЛП симплексным и графическим методом, решена двойственная задача, несколько задач нелинейного программирования, задачи на условный экстремум методом подстановки и методом множителей Лагранжа,  задача потребительского выбора.

Я считаю, что знание этой темы может пригодиться не только экономистам и людям, специально занимающимся этой наукой, но и ненаучным работникам, т.к. в жизни часто приходится сталкиваться с решением подобного рода задач.


Библиографический список

1.     Замков, О.О. Математические методы в экономике: Учебник/ Под общ. ред. д.э.н., проф. А.В. Сидоровича/  О.О. Замков, А.В. Толстопятенко, Ю.Н. Черемных; МГУ им. Ломоносова.-3-е изд., перераб. М.: Издательство «Дело и сервис», 2001

2.     Ильин, В.А. Математический анализ/ В.А. Ильин, В.А. Садовничий, Б.Х. Сендов. – М.: Наука, 1979

3.     Красс, М.С. Основы математики и её приложения в экономическом образовании: Учебник. – 3-е изд. – М.: Дело,2002

4.     Кремер, Н.Ш. Высшая математика для экономистов: Учебник для вузов/ Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н Фридман. - М.: ЮНИТИ, 2002.

5.     Кремер, Н.Ш. Исследование операций в экономике: Учебное пособие для вузов/ Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман; Под ред. проф. Н.Ш. Кремера. – М.: Банки и биржи, ЮНИТИ,1997.

6.     Малыхин, В.И. Математика в экономике: Учебное пособие.- М.:ИНФРА - Москва, 2002.

7.     Симонов, А.В. Об одном приложении производной к решению экономических задач/ А.С. Симонов, Н.Г. Игнатьев// математика в школе №9, 2001

8.     Сборник задач и упражнений по высшей математике: мат. программирование: Учеб. Пособие/ А.В. Кузнецов, В.А. Сакович, Н.И. Холод; Под. общ. ред. А.В. Кузнецова – Мн.: Выш. шк., 2002

9.     Сборник задач по высшей математике для экономистов: Учебное пособие/ Под. ред. В.И. Ермакова.- М.: Инфра – Москва, 2002.

10.                       Сборник задач по микроэкономике. К «Курсу микроэкономики» Р.М. Нуреева/ Гл. ред. д.э.н., проф. Р.М. Нуреев. М.: Норма, 2003

11.                       Фихтенгольц, Г.М. основы математического анализа. Часть 1. 4-е изд. – СПб: издательство «Лань», 2002.

12.                        Онегов, В.А. Исследование операций. Задачи, методы, алгоритмы. – Киров: ВГПУ, 2001.      


Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.