скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Некоторые задачи оптимизации в экономике

х1

х2

х3

х4

х5

х6

Свободный член

х2

х5

х6

2

1

-3

1

0

0

1/2

5/2

4

1/2

-1/2

-1

0

1

0

0

0

1

90

120

56

F’ 18 0 -5 7 0 0 1260

min

                    

х1

х2

х3

х4

х5

х6

Свободный член

х2

х5

х3

19/8

23/8

-3/4

1

0

0

0

0

1

5/8

1/8

-1/4

0

1

0

-1/8

-5/8

1/4

83

85

14

F’ 54/4 0 0 23/4 0 5/4 1330

Ответ: Чтобы получить оптимальный доход, нужно выпускать 83 ед. изделия В, 14 ед. изделия С, а изделие А не выпускать. Оптимальный доход составит 1330 у.е. По решению задачи видим, что у предприятия остаются свободными 85 кг. второго вида ресурсов, 1 и 3 вид полностью расходуются            [5]

3) Двойственная задача.

Каждой задаче линейного программирования соответствует другая задача, называемая двойственной или сопряжённой по отношению к исходной. Теория двойственности полезна для проведения качественных исследований ЗЛП. В главе I пункте 2) рассмотрена задача об использовании ресурсов. Предположим, что некоторая организация решила закупить ресурсы и необходимо установить оптимальные цены на эти ресурсы y1,y2,y3. Очевидно, что

покупающая организация заинтересована в том, чтобы затраты на все ресурсы Z в количествах 180, 210, 236 по ценам соответственно y1,y2,y3 были минимальными, т.е. Z= 180y1+210y2+236y3min. С другой стороны, предприятие, продающее ресурсы, заинтересовано в том, чтобы полученная выручка была не мене той суммы, которую предприятие может получить при переработке ресурсов в готовую продукцию. На изготовление единицы продукции А расходуется 4кг. ресурса 1, 3кг. ресурса 2, 1кг. ресурса 3 по цене соответственно y1,y2,y3. Поэтому, для удовлетворения требований продавца затраты на ресурсы, потребляемые при изготовлении единицы продукции, должны быть не менее её цены 10у.е., т.е. 4 y1+3 y2+ y3≥10.

Аналогично можно составить ограничения в виде неравенств по каждому виду продукции. Экономико-математическая модель исходной задачи и полученной двойственной задачи приведены в таблице.             

Задача I (исходная) Задача II (двойственная)

F= 10x1+14x2+12x3max

 При ограничениях:

      4х1+2х2+х3≤180

      3х1+х2+3х3≤210

      х1+2х2+5х3≤236

и условие неотрицательности переменных x1≥0, x2≥0,  х3≥0.

Для производства трёх изделий А, В, С используются три вида сырья. каждый из них используется в объёме, не превышающем 180, 210 и 236кг. Определить план выпуска изделий, обеспечивающий получение оптимального дохода при условии, что потребление ресурсов по каждому виду продукции не превзойдёт имеющихся запасов.

Z= 180y1+210y2+236y3min

При ограничениях:

     4y1+3y2+y3≥10

     2y1+y2+2y3≥14

     y1+3y2+5y3≥12

и условие неотрицательности переменных y1≥0, у2≥0,  у3≥0.

Найти такой набор цен ресурсов, при котором общие затраты на ресурсы будут минимальными при условии, что затраты на ресурсы при производстве каждого вида продукции будут не менее прибыли от реализации этой продукции.

 Обе задачи, представленные в таблице обладают следующими свойствами:

1.     В одной задаче ищут максимум линейной функции,  в другой минимум.

2.       Коэффициенты при переменных в линейной функции одной задачи являются свободными членами системы ограничений в другой.

3.     Каждая из задач задана в стандартной форме, причём в задаче максимизации – все неравенства вида «», а в задаче минимизации – все неравенства вида «».

4.     Матрицы коэффициентов при переменных в системах ограничений обеих задач являются транспонированными друг к другу.

Для задачи I А=, для задачи II А=

5.     Число неравенств в системе ограничений одной задачи совпадает с числом переменных в другой задаче.

6.     Условия неотрицательности переменных имеются в обеих задачах.

Две задачи I и II  линейного программирования, обладающие указанными свойствами, называются симметричными взаимодвойственными задачами.

Исходя из определения, можно предложить следующий алгоритм составления двойственной задачи.

1.                      Приводят все неравенства системы ограничений исходной задачи к одному смыслу: если в исходной задач ищут максимум линейной функции, то все неравенства системы ограничений приводят к виду «», а если минимум – к виду «».

2.                      Составляют расширенную матрицу системы А1, в которую включают матрицу коэффициентов при переменных, столбец свободных членов системы ограничений и строку коэффициентов при переменных в линейной функции.

3.                      Находят матрицу А, транспонированную к матрице А1.

4.                      Формулируют двойственную задачу на основании полученной матрицы Аи условия неотрицательности переменных.

Связь между оптимальными решениями двойственных задач устанавливается с помощью теорем двойственности. Вначале рассмотрим вспомогательное утверждение.

Основное неравенство теории двойственности. Пусть имеется пара двойственных задач I и II. Покажем, что для любых допустимых решений Х= (x1,x2, …,хn) и У=(y1,y2,…,ym)исходной и двойственной задачи справедливо неравенство F(X) ≤ Z(Y) или                                                        (3.6)

□ Возьмём неравенства системы ограничений исходной задачи bi и умножим соответственно на переменные y1,y2,…,ym и, сложив правые и левые части полученных неравенств, имеем

.                                  (3.7)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.