скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Некоторые задачи оптимизации в экономике

Получаем, что минимальное значение, при заданных ограничениях на переменные, достигается в точке А(200;400). F(A)=2000.

Ответ: наименьшая стоимость 2000 будет при рационе 200 ед. продукта П1 и 400 ед. продукта П2.

Не всегда бывает единственное оптимальное решение. Рассмотрим другую задачу.

2. F=4x1+4x2 max. При ограничениях

   2x1+x2 ≥7,

   x1-2x2 ≥-5,

   x1+x2≤14,

  2x1-x2 ≤18.

Решив, систему ограничений найдём ОДР. Линия уровня будет иметь вид 4x1+4x2=0 x2=-x1.

В данной задаче линия уровня с максимальным уровнем совпадает с граничной линией многоугольника решений. Найдём точку пересечения линии II с линией III:

х1=.

Найдём точку пересечения линии III с линией IV: 14- х1=2 х1-18. Отсюда х1=  . Следовательно, х1=c, x2=14-c, c[;]. Пусть х1=9 [;], х2=5.

F=4·9+4·5=56.

Ответ: Fmax=56 при множестве оптимальных решений х1=c, x2=14-c, где c[;].

Рассмотренный геометрический метод решения ЗЛП обладает рядом достоинств. Он прост, нагляден, позволяет быстро и легко получить ответ.

Однако есть и недостатки. Возникают «технические» погрешности, которые неизбежно возникают при приближенном построении графиков. Второй недостаток геометрического метода заключается в том, что многие величины, имеющие чёткий экономический смысл (например, такие, как остатки ресурсов производства), не выявляются при геометрическом решении задач. Его можно применять только в том случае, когда число переменных в стандартной задаче равно двум. Поэтому необходимы аналитические методы, позволяющие решать ЗЛП с любым числом переменных и выявить экономический смысл, входящих в них величин.

Одним их таких методов является симплексный метод.  

В данном пункте была рассмотрена теорема, из которой следует, что если ЗЛП имеет оптимальное решение, то оно соответствует хотя бы одной угловой точке многогранника решений. Поэтому решение ЗЛП может быть следующим: перебрать конечное число всех угловых точек многогранника решений и выбрать среди них ту, на которой функция цели принимает оптимальное решение. Однако, практическое осуществление такого перебора связано с трудностями, т.к. число решений может быть чрезвычайно велико.

Пусть ОДР изображается многоугольником ABCDEGH. Предположим,

что его угловая точка соответствует исходному допустимому решению. При беспорядочном наборе пришлось бы перебирать все 7 угловых точек многогранника. Однако, из чертежа видно, что после вершины А выгодно перейти к соседней вершине В, а затем – к оптимальной точке С. Вместо семи перебрали 3 вершины, последовательно улучшая линейную функцию.

Идея последовательного улучшения решения легла в основу универсального метода решения ЗЛП симплексного метода. Для использования симплексного метода ЗЛП должна быть приведена к каноническому виду. Для реализации симплексного метода необходимо освоить 3 основных элемента:

·        способ определения какого – либо первоначального допустимого решения

·       правило перехода к лучшему решению

·        критерий проверки оптимальности найденного решения.

Алгоритм конкретной реализации этих элементов рассмотрим на примере.

Практические расчёты при решении реальных задач симплексным методом выполняются в настоящее время с помощью компьютера, однако, если расчёты выполняются без ЭВМ, то удобно использовать симплексные таблицы.

Алгоритм составления симплексных таблиц:

1.     Система ограничений приводится к каноническому виду.

Для нахождения первоначального базисного решения переменные разбиваются на основные и неосновные. Т.к. определитель, составленный из коэффициентов при дополнительных переменных отличен от нуля, то эти переменные можно взять в качестве основных. При выборе основных переменных не обязательно составлять определитель, достаточно воспользоваться следующим правилом: в качестве основных переменных следует выбрать такие, каждая из которых входит только в одно из уравнений системы ограничений, при этом нет таких уравнений системы, в которые не входит ни одна из этих переменных.

2.     Составляют таблицу, где в последней строке указываются коэффициенты функции с противоположным знаком. В левом столбце таблицы записывают основные переменные, в первой строке – все переменные, в последнем столбце свободные члены системы.

3.     Проверяют выполнение критерия оптимальности – наличие в последней  строке отрицательных коэффициентов. Если таких нет, то решение оптимально, достигнут, например, максимум функции (в правом нижнем углу таблицы), основные переменные при этом принимают значение bi, а неосновные переменные равны нулю, т.е. получается оптимальное базисное решение.

4.     Если критерий оптимальности не выполнен, то наибольший по модулю отрицательный коэффициент в последней строке определяет разрешающий столбец S. Составляют оценочные ограничения по следующим правилам:

·        ∞, если bi и аis имеют разные знаки;

·        ∞, если bi=0 и аis<0;

·        ∞, если аis=0;

·         0, если bi=0 и аis>0;

·        , если bi и аis имеют одинаковые знаки.

Определяют min . Если конечного минимума нет, то задача не имеет конечного оптимума. Далее выбирают строку с номером q, на которой он достигается (любую, если их несколько), и называют её разрешающей строкой. На пересечении разрешающей строки и разрешающего столбца находится разрешающий элемент аqs.

5.     Переходим к следующей таблице по правилам:

а) в левом столбце записывают новый базис: вместо основной переменной хq  - переменную хs, а геометрически произойдёт переход к соседней  вершине многоугольника, где значение линейной функции «лучше». Значение линейной функции увеличится, т.к. переменная, входящая в выражение функции, станет основной, т.е. будет принимать не нулевое, а положительное значение;

b)    новую строку с номером q получают из старой делением на разрешающий элемент аqs;

c)     все остальные элементы вычисляют по правилу многоугольника:

;

Далее переходим к пункту 3 алгоритма.

Замечание: при отыскании минимума функции Z, полагаем, что F=-Z и учитываем, что Zmin=-Fmax.

Решим задачу симплексным методом.

Для производства трёх изделий А,В и С используются три вида ресурсов. Каждый из них используется в объёме, не превышающем 180, 210 и 236 кг. Нормы затрат каждого из видов ресурсов на одно изделие и цена единицы изделий приведены в таблице.

Вид ресурса

Нормы затрат ресурсов на 1 изделие, кг

А

В

С

1

2

3

4

3

1

2

1

2

1

3

5

Цена изделия, у.е.

10

14

12

 Определить план выпуска изделий, обеспечивающий получение оптимального дохода.

Решение. х1- количество выпускаемых изделий А

                 х2- количество выпускаемых изделий В

                 х3- количество выпускаемых изделий С.

Тогда целевая функция будет иметь вид: F=10x1+14x2+12 х3 →max

при ограничениях:          4x1+2x2+х3≤180

                                         3x1+x2+3х3≤210

                                         x1+2x2+5х3≤236

Приведём систему к каноническому виду:

4x1+2x2+х3+х4=180

                                         3x1+x2+3х3+х5=210

                                       x1+2x2+5х3+х6=236.

Составляем таблицу

х1

х2

х3

х4

х5

х6

Свободный член

х4

х5

х6

4

3

1

2

1

2

1

3

5

1

0

0

0

1

0

0

0

1

180

210

236

F’ -10 -14 -12 0 0 0 0

Определим ведущий элемент: min. Далее выполняем действия, следуя алгоритму.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.