скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Исследование свойств магнитных жидкостей методом светорассеяния

Вывод параметров Стокса и их свойства.

Поскольку полный вывод параметров Стокса в современной литературе нелегко найти в одном месте, полезно охарактеризовать основной путь, ведущий к установлению связей между этими параметрами и основным состоянием поляризации рассеянного излучения [ ]. Рассмотрим элементарный процесс рассеяния отдельной частицей, помещенной в точку О на рис.2, а.


a)                                                                                     б)    

Рис.2  Графическое изображение элементарного процесса рассеяния и определение используемой системы координат. а – правосторонняя ортогональная система координат для падающего и рассеянного излучений, определение угла рассеяния  и элемента телесного угла; б – эллипс поляризации, правосторонняя система координат, оси и другие параметры.

Предположим, что в результате этого процесса получается полностью поляризованное монохроматическое излучение с произвольной ориентацией эллипса поляризации, распространяющееся в направлении 3 (перпендикулярно плоскости чертежа рис.2, б). Это направление вместе с направлением падающего излучения I0 и точкой О определяет плоскость рассеяния. Два других направления 1 и 2 совместно с направлением 3 образуют правую ортогональную систему координат с центром в точке О/. Направления 1 и 2 всегда выбираются соответственно перпендикулярно и параллельно плоскости рассеяния.

Чтобы найти соотношение между вектор-параметрами Стокса I0 и I, которые связаны матрицей рассеяния (10) и комплексными амплитудами S1 и S2, определяемые из теории, необходимо, прежде всего, сделать два вполне справедливых допущения.

                          .                                   (10)

Во-первых, примем, что экспериментально можно определить (например, с помощью анализаторов и пластинок в ¼ длины волны) осреднение по времени амплитуды и разности фаз колебаний электрического вектора вдоль направлений 1 и 2 [ ].

Во-вторых, предположим, что значения комплексных амплитуд рассеяния вдоль этих направлений можно теоретически выразить через амплитуды падающего излучения (это делается при помощи теории Ми). Рассмотрим теперь поле излучения вдоль фиксированной плоскости, проходящей через точку О/, которая удалена от точки О на расстояние, достаточное для выполнения указанных выше условий освещения (рис 2, б). Принимая во внимание, как обычно, наличие гармонических колебаний вектора , происходящих с угловой частотой , можно записать

                                     ,

                                                                     (11)

где

относятся к компонентам вектора  вдоль направлений 1 и 2 соответственно;  и  - максимальные значения амплитуд  и . Фазовые углы  и  отсчитываются таким образом, что разность фаз  является постоянной величиной. Согласно принятым ранее допущениям, значения  и  также должны быть постоянными. Правая часть выражения (11) дает параметрическое представление эллипса поляризации, который является результатом двух связанных гармонических колебаний, распространяющихся вдоль направлений 1 и 2. Действительно, исключая угол  при помощи очевидных тригонометрических преобразований , после алгебраических упрощений получаем из (11)

                                                                            (12)

Это общая форма уравнения эллипса, описываемого концом вектора электрического поля. Большая и малая оси этого эллипса вдоль направлений  и  необязательно совпадают с осями координат 1 и 2, а образуют с ними угол . Чтобы определить угол , произведем стандартный поворот координатных осей 1 и 2 при помощи матрицы преобразования

,

которая дает компоненты поля вдоль направлений  и .  Используя (11), получаем          

Раскрывая тригонометрическое выражение , предыдущие формулы перепишем в виде

,

                                            ,                                        (13)

где

                                       ,   

                                    .             (14)

Исключая угол  из системы (13), после упрощений находим

                                                  (15)

Используя соотношение (14) и производя стандартные преобразования, полагаем

Следует подчеркнуть, что уравнение (15) не имеет смысла, если . Последнее равенство выполняется, когда , т.е. , где   - любое целое число, включая нуль. В случае  эллипс поляризации вырождается в прямую. Заметим, что при помощи указанного выше поворота осей уравнение эллипса (15) можно привести к нормальной форме

,

при которой центр эллипса находится в начале координат, а большая  и малая  полуоси располагаются соответственно вдоль направлений  и . Сравнивая нормальную форму с общим видом уравнения (15), отмечаем, что третий член в левой части (15) пропадает, т.е.

 Используя выражение (14), после группировки членов и упрощений получаем

,

или

                                                                                           (16)

Будем считать, что соотношение (16) справедливо даже и тогда, когда , т.е. . В этом случае  и имеется неопределенность относительно квадранта плоскости (1,2), в котором лежит главная ось эллипса. Эта неопределенность устраняется, если известна разность фаз .

Выведем теперь из (15) другие соотношения, используя определения большой и малой полуосей эллипса поляризации. При условии, что уравнение (16) остается справедливым, имеем

                          

т.е.

Из соотношений (14) следует, что числитель в правой части последнего уравнения обращается в . Используя указанное выше выражение для , получаем

                                                                                      (17)

Теперь можно показать аналитически, что для рассматриваемого эллипса поляризации длина диагонали D любого описанного около него прямоугольника, т.е. расстояние 2О/R на рис 2, б, является инвариантной

для всех углов . Отсюда следует, что для всех  имеем

                                                                                              (18)

Поэтому, сравнивая (18) с (17), получаем

                                                                                               (19)

Прежде чем получить выражения для параметров Стокса, необходимо вывести еще несколько дополнительных соотношений. Определим угол  следующим образом:

,       .

Используя обычные свойства алгебраических отношений и некоторые тригонометрические тождества, получим

                                 ,                                  (20)

Аналогичным образом введем другой вспомогательный угол :

                                      ,                                                  (21)

После подстановки (21) в (16), имеем

                                                                                            (22)

Наконец, разделив (19) на (18), получаем

                                                                                    (23)

Из (20), (21) и (23) находим

                                                                                         (24) 

Получим теперь соотношения между четырьмя параметрами Стокса I, Q, U и V для полностью поляризованного потока излучения и такими параметрами поляризации как углы  и . Для этого определим параметры Стокса следующим образом:

                                                                                              (25)

Соответствующий переходный множитель между потоками энергии и квадратами амплитуд электрического поля ради простоты в тождествах (25) опущен. Возводя в квадрат все четыре параметра (25) и затем складывая их, замечаем, что

                                                                                            (26)

Это равенство справедливо только в том случае, когда рассматриваемый поток излучения полностью поляризован.

Далее, из (16), (20) и (23) имеем

,

.

При подстановке этих выражений в (26) получаем

или

Таким образом, можно записать выражения для четырех параметров Стокса в двух удобных формах, полностью описывающих состояние поляризации электромагнитного излучения. Именно,

                                    

Остается теперь рассмотреть вопрос о направлении вращения конца электрического вектора, описывающего эллипс поляризации. Из выражений (11) для компонент  и  следует, что если , то конец вектора результирующего электрического поля  описывает эллипс в направлении движения часовой стрелки в фиксированной плоскости, проходящей через точку О/. На эллипсе, изображенной на рис. 2,б, это направлении указано стрелками. Для данного случая термин правосторонняя поляризация обосновывается тем, что в фиксированный каждый момент времени концы электрических векторов непрерывного цуга волн описывают вполне определенную спираль, или винтовую линию, в направлении движения часовой стрелки. Поляризация будет левосторонней (направление движения против часовой стрелки в плоскости рис. 2,б), .

Из выражений (24) и (27г) следует, что знак параметра Стокса М определяет направление вращения эллипса поляризации, поскольку по определению . Поляризация будет всегда правосторонней в указанном выше смысле, когда , или , а . Однако поскольку угол  определяется так, что величина  всегда равна отношению малой оси эллипса к его большой оси, то окончательные условия, определяющие направление поляризации будут следующими:

,      - правосторонняя поляризация,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.