скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Использование комплексов полиамфолита этиламнокротонатаакриловой кислоты с поверхностно-активными веществами для извлечения 90Sr

В некоторых белках связывание ионогенных ПАВ индуцирует не спирализацию, а наоборот, разрушение спиральной структуры [[5]]. Своеобразная третичная структура белка способствует тому, что он взаимодействую с различными нерастворимыми веществами углеводородной природы, солюбилизирует их. В особенности это относится к взаимодействию белков с ПАВ. При этом ориентация их такова, что своей гидрофобной частью они проникают внутрь белковой глобулы, гидрофильная же часть молекул находится на поверхности глобулы, сольватируемой водой. Естественно, что поглощение ПАВ изменяет третичную структуру белков и влияет на устойчивость их конформации.

Как видно из обзора литературы по взаимодействию белков с дифильными ионами ПАВ, экспериментальные данные по связыванию последних биополимерами и их интерпретация столь же противоречивы, как и данные по белок – липидным взаимодействиям.

В связи с этим авторы пришли к выводу о моделировании взаимодействия белок-детергент, заменив белки на полипептиды, представляющие собой гомополимеры одной из альфа-кислот.

Показано, что при взаимодействии липосом с полипептидами происходит изменение конформации макромолекул и образование комплекса, как пологают авторы, обусловленное как электростатическими, так и гидрофобными взаимодействиями. Так, например, образование комплекса полипептид липид не наблюдается при тех значениях рН раствора, при которых исследуемый раствор не заряжен или же заряжен одинаково с липидом. Исследуя взаимодействия липосом с полилизином, полиорнитином сополимерами глутаминовой кислоты с аланином обнаружили увеличение спиральности полипептидов. Однако, механизм образования комплекса авторами не рассматривается.

1.2 Ассоциация синтетических полиэлектролитов с поверхностно активными веществами

Многие физиологически активные вещества представляют собой дифильные ионы и их взаимодействие с белками, нуклеиновыми кислотами, полисахаридами и другими биополимерами лежит в основе важных жизненных процессов. Взаимодействие водорастворимых синтетических полиэлектролитов (СПЭ) с ПАВ рассматривается как новый тип макромолекулярных реакции. Продукты этих реакции обладая уникальными свойствами, существенно отличными от свойств исходных компонентов, находят широкое применение в технике, медицине и других областях.

Механизм и природа взаимодействий между функциональными группами водорастворимого СПЭ и низкомолекулярного соединения (ПАВ, краситель, лекарственное вещество и т.д.) могут быть различными в зависимости от природы взаимодействующих компонентов: ван-дер-ваальсовые, электростатические, ион-дипольные, гидрофобные взаимодействия, водородные связи. Так, при взаимодействии полимерных и кислот и оснований с катионными, анионными или неионными ПАВ образуются компактные структуры, стабилизированные электростатическими и гидрофобными взаимодействии, водородными связями.

Взаимодействие между полиэлектролитами и противоположно заряженными ПАВ в основном электростатическое. Это сильное взаимодействие вызывает ассоциацию при очень низких концентрациях ПАВ, известных как критическая концентрация агрегации (ККА), которая обычно ниже критической концентрации мицелообразования (ККМ) свободного ПАВ. Дальнейшее добавление ПАВ приводит к фазовому разделению. Максимальный выход осадка имеет место при отношении заряда ПЭ и ПАВ около 1:1. В зависимости от природы электролита дальнейшее добавление избытка ПАВ может вызвать растворение осадка. Следовательно, структура и условия существование комплексов полимер - ПАВ будут определяться соотношением полимер – ПАВ, что связано с образованием стехиометричесого или нестехиометрического комплекса. Структура полимерного комплекса зависит от такой важной характеристики ПАВ как критическая концентрация мицелообразования (ККМ).

В разбавленных растворах при добавлении к полиэлектролиту противоположно заряженного ПАВ (до точки минимума вязкости) получается система, напоминающая полимерное мыло. Часть зарядов полииона нейтрализована заряженными группами ионов ПАВ, тогда как длинноцепные гидрофобные радикалы ПАВ, стремясь избежать контакта с водой, образуют неполярные ядра. Эти ядра поддерживаются в воде свободными зарядами полиэлектролита – образуется мономолекулярная мицелла. Добавление органического растворителя приводит к разрушению гидрофобного ядра мицеллы, что сопровождается разворачиванием компактных клубков поликомплекса и увеличением их размеров.

Гидрофобизация комплексов полиэлектролит–ПАВ обусловливает их компактизацию и выделение в отдельную фазу. Так, добавление ПАВ к полиэлектролиту приводит к сильному снижению приведенной вязкости, что свидетельствует об уменьшении размера комплексных частиц. Однако, дальнейшее увеличение содержания ПАВ может привести к гомогенизации системы и возрастанию вязкости. Это зависит от баланса между энергиями электростатического и гидрофобного взаимодействий.

На глубину комплексообразования и стабильность ассоциатов полимер-ПАВ влияют такие факторы как длина цепи полимера, гибкость, конформация, микроструктура полимерных молекул, свойства среды (концентрации компонентов, степень их ионизации, температура, рН и ионная сила среды, состав растворителя). Огромное количество работ посвящено исследованию комплексов полимер-ПАВ и выяснению влияния перечисленных выше факторов на свойства образующихся ассоциатов [[6]].

Смешивание разбавленных водных растворов поликислот и полиоснований с противоположно заряженным ПАВ приводит к заметному изменению рН раствора и появлению опалесценции раствора вплоть до выпадения осадка. Такое поведение смесей полиэлектролитов с соответствующими детергентами авторы объясняют, по аналогии с образованием солевых комплексов между противоположно заряженными макромолекулами [[7], [8]], с образованием комплекса ПЭ-ПАВ, который сопровождается выделением ионов низкомолекулярной кислоты и щелочи:

Овал: +++СООН + ~ →-СОО - ~ + Н+                                                             (1)

NH2 + ~ → ~ +NH2 + ОН-                                                                                                            (2)

Необходимо отметить, что реакция взаимодействия слабых поликислот и полиоснований с ПАВ [[9]] являются уникальными, так как при комплексообразовании с ПАВ слабая поликислота вытесняет сильную поликислоту, а слабое полиоснование – сильное полиоснование. Равновесие аналогичных реакций (1) и (2) для низкомолекулярных модельных систем практически полностью сдвинуто влево. Отсюда можно заключить, что процесс электростатического взаимодействия ПЭ с ПАВ не происходил бы в заметной степени, если бы он не стабилизировался дополнительно гидрофобными взаимодействиями неполярных участков вступающих в реакцию связывания.

Авторы полагают, что электростатическое связывание дифильных ионов детергента с полиэлектролитной цепью сопровождается существенной гидрофобизацией макромолекул. Показано, что величина гидрофобности (m), рассчитанная с учетом электростатического связывания ПАВ полиэлектролитом, симбатно возрастает с увеличением степени электростатического воздействия (θ).

О конформационных превращениях макромолекул полиэлектролитов при их взаимодействии с ПАВ авторы работ судили по изменению их приведенной вязкости и мутности. Показано, что введение в раствор синтетического полиэлектролита противоположно заряженных ПАВ приводит к заметному понижению приведенной вязкости и возрастанию мутности.

А.В. Билалов с сотрудниками сообщили в работе о новом эффекте, заключающемся в скачкообразном увеличении активности ионов ПАВ и уменьшении активности противоионов полиэлектролита. При достижении определенного значения концентрации ПАВ в растворе в области насыщения объема макроиона молекулами ПАВ происходит «выброс» значительной части ионов ПАВ из комплекса и их обратное замещение неорганическими противоионами.

ПАВ и полимеры в их смешанных водных растворах могут образовывать ассоциаты (комплексы), стабилизированные электростатическими, ион-дипольными, гидрофобными и водородными связями. Противоположно заряженные ПАВ и полиэлектролиты образуют слабодиссоцирующие соли – электростатические стабилизированные комплексы уже при весьма низких по сравнению с ККМ концентрациях ПАВ.

В работах исследована реакция комплексообразования синтетических полимерных амфолитов на примере статического сополимера 1,2,5 триметил-4винилэтинил пиперидола-4 и акриловой кислоты (ПА1) и регулярного сополимера стирола и N,N-диметиламинопропил моноамида малеиновой кислоты (ПА2) с анионным ПАВ (ДДС) и катионным ПАВ (цетилтриметиламмоний бромид (ЦТАБ)) в воде и водно-спиртовых растворах. Аналогично взаимодействию индивидуальных поликислот и полиоснований с ПАВ катионный детергент реагирует с кислотными группами ПА1 и ПА2 с выделением гидроксильных ионов. Установлено, что связывание как анионного, так и катионного ПАВ полиамфолита (ПА1) осуществляется за счет электростатических взаимодействий, а компактная структура поликомплекса стабилизируется гидрофобными взаимодействиями длинных алкильных частей ПАВ и удерживается в растворе незакомплексоваными частями сополимера. Отмечено, что поведение ПА2, содержащего гидрофобные стирольные участки, отличаются от поведения ПА1 в присутствии ПАВ: добавление даже незначительного количества ЦТАБ вызывает падение вязкости ПА2 вплоть до образования нерастворимого осадка, что вызвано сильной гидрофобизацией макромолекул, приводящей к формированию глобулярных частиц.

Путем изменения состояния ионизации кислотных и основных групп ПА можно регулировать глубину превращения реакции и в широких пределах варьировать состав, структуру и свойства полиэлектролитных комплексов.

Работа посвящена исследованию образования полиамфолитов статического и регулярного строения с ПАВ. В этих работах основное внимание уделено фактам образования комплексов ПА-ПАВ. Высвобождение ионов ПАВ, красителей и ионов металлов при приближении к ИЭТ объясняется большой кооперативностью реакции комплексообразования между противоположно заряженными функциональными группами самого ПА. По мнению авторов макромолекулы ПА в ИЭТ образуют единую кооперативную систему, напоминающую структуру частиц НПЭК. Связывание ионов ПАВ при удалении от ИЭТ можно рассматривать как процесс разрушения единой кооперативной системы с последующим взаимодействием ПА с ионами ПАВ.

При исследовании взаимодействия синтетических ПА и полибетаинов с СПЭ и ПАВ в водных растворах показано, что образование комплекса в этих системах контролируется соотношением внутримолекулярного и интерполимерного солеобразования между противоположно заряженными функциональными группами и возникающими при этом дефектами структур в виде «петель» и «хвостов».

Установлено, что в системе МПВ-ПАВ электростатическое взаимодействие полиамфолита с ПАВ, стабилизированное гидрофобными взаимодействиями сопровождается изменением гидродинамических размеров молекул. Установлено увеличение гидродинамического размера полиамфолита, находящегося в ИЭТ, при его взаимодействии с ПАВ в результате изменения баланса свободной электростатической энергии. Натриевая соль полиамфолита показывает высокую комплексообразующую способность с ЦТАБ. Обнаружено возрастание солюбилизирующей способности водного раствора слабоионизированного полиамфолита при его взаимодействии с ПАВ, причем эффективность солюбилизации малорастворимого красителя возрастает с увеличением степени ассоциации полиамфолита с ПАВ.

Комплексообразование синтетических полиэлектролитов (ПАК, ПМАК, ПЭИ) с мицеллами ПАВ проведены в работе, где установлено, что степень электростатического связывания мицелл ПАВ с СПЭ гораздо больше, чем при взаимодействии СПЭ с ПАВ в молекулярном состоянии.

Таким образом, из вышеприведенных литературных данных следует, что взаимодействие амфотерных полиэлектролитов с противоположно заряженными ПАВ имеет свои особенности и сопровождается сильной компактизацией частиц поликомплекса за счет электростатического связывания ионогенных ПАВ полиамфолитами. Напротив, гидрофобное связывание молекул ПАВ приводит к разворачиванию макромолекулярных клубков. Степень проявления этих эффектов зависит от степени дифильности макромолекул, природы ПАВ, а также от степени ионизации функциональных групп полиамфолитов.


1.3 Ассоциаты поверхностно-активных веществ с гидрогелями

На сегодняшний день можно выделить ряд основных закономерностей, характеризующих особенности процессов, протекающих при ассоциации линейных макромолекул с ПАВ вне зависимости от их природы:

1.         наличие конформационных переходов в полимерной цепи, таких как «клубок – глобула» или «клубок – развернутая цепь»;

2.         расширение или смещение области фазового разделения в системе полимер – вода при добавлении раствора ПАВ;

3.         формирование микрофазных композиций;

4.         смещение линий фазового разделения золь – гель и изменение реологических свойств компонентов.

Для выраженного проявления этих особенностей необходимо помимо заряженных функциональных групп наличие развитых гидрофобных участков вдоль полимерных цепей. Это позволило выделить полимеры с низкими значениями гидрофильно-липофильного баланса в разряд «самоорганизующихся», так как они имеют тенденцию к самоорганизации, в результате чего происходит гелеобразование при определенных условиях за счет агрегации гидрофобных доменов. Присутствие в таких системах ПАВ усиливает тенденцию к «самоорганизации» за счет ассоциации гидрофобных участков как самого полимера, так и ПАВ.

Для выяснения механизма взаимодействия между редкосшитыми сетками и ионогенными ПАВ следует принять во внимание ряд важных факторов. Во-первых, оба объекта системы характеризуются индивидуальными специфическими свойствами, именно, способностью структурироваться в растворе по достижении критической концентрации мицеллообразования (ККМ) для ПАВ, а также изменением внутренней микроструктуры индивидуального гидрогеля в процессе набухания благодаря конформационной мобильности полимерных цепей между узлами сшивания. Во-вторых, учет межфазной поверхности на поверхности гидрогеля, формируемой при набухании, что в значительной степени определяет специфику проникновения ионогенных низко и высокомолекулярных веществ в объем сетки, а следовательно, ее избирательность по отношению к взаимодействующему «партнеру». Было отмечено, что при описании процессов массопереноса через межфазные границы, в том числе переноса ионов необходимо учитывать два существенных фактора: структурные неоднородности области сопряженных фаз (динамические характеристики атомных групп и фрагментов полимерных цепей в этой области с характерным размером ~1нм могут заметно отличаться от объемных значений) и наличие в области межфазных границ сильных электрических полей, создаваемых различными заряженными и полярными группами (в том числе адсорбированными атомами и молекулами, образующими донорно-акцепторные комплексы, разного рода кластерами и субстанциями другой фазы). С этой точки зрения реакционную зону взаимодействия между гидрогелями и молекулами (ионами) ПАВ условно можно разделить на две области: поверхностную (1) и диффузно-дрейфовую (2), где происходит модификация или формирование новой структуры благодаря комплексообразованию в объеме сетки.

Рассмотрены три режима взаимодействия сеток с ионами ПАВ в зависимости от концентрации последнего (с0). Первый режим соответствует концентрации ПАВ с0<c*, при которой ионы дифильных молекул могут проникать в объем сетки с незначительным уменьшением размера геля. По достижении с** (второй режим) в объеме геля начинают формироваться мицеллы, что приводит к постепенному или резкому снижению (коллапсу) степени набухания геля (α). Необходимо отметить, что характер изменения α и концентрация с**, соответствующая мицеллообразованию, зависят от степени заряженности сетки. Третий режим соответствует полной нейтрализации заряда сетки ионами ПАВ. Существенно, что при с0=с** (с**>c*>cККМ) концентрации свободных ионов внутри сетки и вне ее выравниваются и остаются постоянными. Полное отсутствие распирающего давления газа противоионов и установление мембранного равновесия между сеткой и внешним раствором не приводит к дальнейшему изменению размера сетки, который становится сравним с размером нейтральной сетки.

Страницы: 1, 2, 3, 4, 5, 6


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.