скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Инверсия и ее применение

1.3 Лемма об антипараллельных прямых

Сначала рассмотрим вспомогательное понятие.

Пусть некоторая прямая a пересекает обе стороны некоторого угла (k, l) (рис. 12). В пересечении с какой–либо из сторон угла, например k, эта прямая образует четыре угла, из которых только один лежит внутри треугольника, отсекаемого прямой от угла (k, l).

Рис. 12

В дальнейшем, когда речь будет идти об угле между прямой и стороной угла, мы будем иметь в виду именно этот угол.

Пусть теперь две прямые (рис. 13) пересекают стороны угла, причем одна из них образует с одной из сторон угла такой же угол, какой вторая прямая образует с другой стороной угла (на рис. 13) ∟1 = ∟2.

Рис. 13

Легко понять, что когда и первая прямая образует со второй стороной угла такой же угол, какой образует вторая прямая с первой стороной угла ∟3 = ∟4.

Определение. Две прямые, пересекающие стороны некоторого угла, называются антипараллельными относительно этого угла, если одна из них образует с одной из его сторон такой же угол, какой образует другая прямая с другой его стороной.

Антипараллельными являются прямые a и b на рисунке 13, прямые с и d на рисунке 14, где с ┴ k и d ┴ l.

Антипараллельные прямые, вообще говоря, не параллельны. Исключение составляет только случай, когда обе прямые перпендикулярны к биссектрисе данного угла (рис. 15).

Рис. 14

Рис. 15

Теорема (лемма об антипараллельных прямых). Прямая, соединяющая две точки плоскости, и прямая, соединяющая две инверсные им точки, антипараллельны относительно угла с вершиной в центре инверсии и сторонами, проходящими через данные точки.

Доказательство. Пусть щ (О, R) базисная окружность, точки Аґ и Вґ (рис. 16) инверсны соответственно точкам А и В. Тогда ОА ОАґ = ОВ ОВґ = R2, так что  = . Кроме того, в треугольниках АОВ и ВґОАґ угол О общий. Следовательно, ∆АОВ подобен ∆ ВґОАґ и, значит, ∟ОВА = ∟ОА′В′.

Таким образом, прямые АВ и А′В′ антипараллельны относительно угла АОВ, что и требовалось доказать.

Если (рис. 16) каким-либо образом построены две соответственные в инверсии точки А и А′, то доказанная лемма дает простой прием построения образа произвольной точки В (не лежащей на прямой ОА): соединить В с А и провести прямую А′В′ так, чтобы ∟ОА′В′ = ∟ОВА.

Рис. 16

1.4 Степень точки относительно окружности

Понятие степени точки относительно окружности играет существенную роль и является аналогом понятия расстояния от точки до прямой.

Степенью точки М относительно окружности К называется число

s = d2 – r2 ,

где d – расстояние точки М от центра О окружности К, а r – радиус этой окружности. Если точка М лежит внутри окружности К, то d < r, и потому степень точки М: s = d2 r2 – отрицательна. Величины r d и r + d суть отрезки диаметра PQ, на которые его разбивает точка М. Поэтому для любой хорды АМВ круга К (рис. 17) имеем s = - АМ МВ.

Рис. 17

Если точка М лежит на окружности К, то d = r и, следовательно, степень точки М равна нулю. Наконец, если точка М лежит вне окружности К, то d > r и s = d2 – r2 представляет собой квадрат длины касательной к окружности К, проведенной из точки М (рис. 18).

Рис. 18


Пусть теперь даны две окружности К1 и К2. Геометрическое место точек, степени которых относительно окружностей К1 и К2 равны, называют радикальной осью окружностей К1 и К2.

1.5 Инверсия окружностей, проходящих и не проходящих через центр инверсии

Путь некоторая окружность г проходит через центр инверсии – точку О. При инверсии все точки окружности г, за исключением точки О, преобразуются в какие-то другие точки. Какую фигуру образуют эти точки?

Теорема. При инверсии окружность, проходящая через центр инверсии, преобразуется в прямую. Эта прямая перпендикулярна к линии центров данной окружности и базисной окружности.

Доказательство. Пусть щ (О, R) – базисная окружность инверсии, г (О1, R1) – данная окружность, проходящая через О. Проведем прямую О О1. Пусть она пересечет окружность г в точке А (рис. 19).

Рис. 19

Обозначим через Аґ точку, инверсную точке А. Выберем на окружности г произвольную точку Р и построим ей инверсную точку Рґ. соединим Р с А, Рґ с Аґ. В силу леммы об антипараллельных прямых ∟ОАґРґ = ∟ОРА. Но ∟ОРА = 90˚, как опирающийся на диаметр окружности г. Поэтому ∟ОАґРґ тоже равен 90˚, т. е. точка Р′ лежит на прямой, проходящей через точку А′ и перпендикулярной к прямой ОА′. Обозначим прямую Р′А′ через а. Мы показали, что каждая точка окружности г преобразуется в точку прямой а. Не трудно показать, что и обратно: каждая точка прямой а инверсна некоторой точке окружности г. Следовательно, окружность г преобразуется при инверсии в прямую а, что и требовалось доказать.

Из рассмотренной теоремы вытекает способ построения прямой, инверсной данной окружности, если последняя проходит через центр инверсии: 1) строим прямую ОО1, проходящую через центр инверсии и центр данной окружности; 2) отмечаем точку А пересечения этой прямой с данной окружностью (А ≠ О); 3) строим точку А′, инверсную точке А, и 4) через точку А′ проводим прямую а, перпендикулярную прямой ОО1. Полученная прямая а искомая.

В том случае, когда базисная окружность пересекает данную окружность г, построение упрощается: прямой, инверсной окружности г, является прямая, определяемая двумя точками пересечения окружности г с базисной окружностью (рис. 20).

Если окружность г касается базисной окружности щ, то г преобразуется в общую касательную этих окружностей.

Если две окружности касаются в центре инверсии, то они преобразуются при инверсии в пару параллельных прямых.

Рис. 20


Теорема. При инверсии окружность, не проходящая через центр инверсии, преобразуется в окружность.

Доказательство. Пусть щ (О, r) – базисная окружность (рис. 21), г (О1, r1) – данная окружность. Проведем прямую ОО1 и отметим точки А и В ее пересечения с окружностью г. Пусть Аґ и Вґ - инверсные им точки. Обозначим через Р произвольную точку окружности г, через Рґ - инверсную ей точку. Соединим Р с А и В, Рґ с Аґ и Вґ. из леммы об антипараллельных прямых вытекает, что ∟1′ = ∟1, ∟2′ = ∟2. Но ∟1 + ∟2 = 90є. Поэтому ∟1ґ + ∟2ґ = 90є. Следовательно, ∟АґРґВ = 90є. Таким образом, из точки Рґ отрезок АґВґ виден под прямым углом. Значит, точка Рґ лежит на окружности с диаметром АґВґ. Обозначим эту окружность через гґ. Мы доказали, что каждая точка окружности г при инверсии преобразуется в точку окружности гґ.

Рис. 21

По ходу доказательства теоремы выясняется следующий способ построения окружности, инверсной данной окружности (если последняя не проходит через центр инверсии): 1) проводим прямую через центр инверсии О и центр О1 данной окружности г; 2) отмечаем точки А и В пересечения этой прямой с окружностью гґ; 3) строим инверсные точки Аґ и Вґ; 4) строим окружность гґ на отрезке АґВґ как на диаметре. Окружность гґ искомая.


1.6 Преобразование прямой при инверсии

При инверсии прямая, проходящая через центр инверсии, преобразуется сама в себя. Как обстоит дело с прямой, не проходящей через центр инверсии?

Теорема. При инверсии прямая, не проходящая через центр инверсии, преобразуется в окружность, проходящую через центр инверсии.

Доказательство. Пусть щ (О, r) – базисная окружность (рис. 22), а данная прямая. Опустим из точки О перпендикуляр ОА на прямую а. Пусть Аґ - точка, инверсная точке А, а г – окружность, имеющая диаметром ОАґ.

Рис. 22

При инверсии окружность г преобразуется в прямую а (по теореме из пункта 1.5). в силу свойства взаимности прямая а преобразуется в окружность г.

Заметим, что по ходу доказательства мы выяснили способ построения окружности, инверсной данной прямой.

1.7 Инвариантные окружности. Сохранение углов при инверсии

При инверсии базисная окружность преобразуется в себя. Но существуют и другие окружности, обладающие таким свойством.

Вспомним некоторые определения.

Углом между двумя линиями в точке их пересечения Т называется угол между касательными к этим линиям, проведенным в точке Т.

Две окружности называются ортогональными, если они пересекаются под прямым углом. Если две окружности ортогональны, то их радиусы, проведенные в точку пересечения, перпендикулярны между собой, и наоборот.

Рис. 23

Отсюда вытекает способ построения окружностей, ортогональных данной окружности щ в данной точке Т. для этого достаточно на касательной t к окружности щ в точке Т выбрать произвольную точку О1 и построить окружность щ1 (О1, О1Т), которая и будет искомой (рис. 23).

Теорема. Для того чтобы окружность, отличная от базисной окружности, преобразовалась при инверсии в себя, необходимо и достаточно, чтобы она была ортогональна базисной окружности.

Доказательство. 1) Достаточность. Пусть окружность г (О1, r1) (рис. 24) ортогональна базисной окружности щ (О, r). Докажем, что окружность г преобразуется в себя.

Рис. 24

Пусть Р произвольная точка окружности г. Проведем прямую ОР. Она пересечет окружность г еще в некоторой точке Р1 (если прямая ОР касается окружности г, то за Р1 примем точку Р).

Так как окружность г ортогональна окружности щ, то радиус ОТ, соединяющий центр инверсии с точкой пересечения окружностей, касается окружности г. Поэтому ОР ОР1 = ОТ2 = r2, так что точка Р1 инверсна точке Р. Итак, при инверсии относительно окружности щ каждая точка Р окружности г преобразуется в точку Р1, также лежащую на окружности г.

Принимая во внимание свойство взаимности инверсных точек, можно заключить также, что и обратно: каждая точка окружности г служит образом некоторой точки этой же окружности. Таким образом, окружность г преобразуется в себя.

2) Необходимость. Пусть окружность г, отличная от базисной окружности инверсии, преобразуется в себя. Докажем, что г – окружность, ортогональная базисной. Так как окружность г отлична от окружности щ, то она содержит точку Р, не лежащую на щ. Пусть точка Р1 инверсна точке Р (рис. 24); тогда одна из двух точек Р и Р1 находится вне, а другая внутри окружности щ. Следовательно, окружность г пересекает окружность щ. Обозначим через Т одну из точек их пересечения. Покажем, что ОТ – касательная к окружности г. Это можно установить способом «от противного». Допустим, что, помимо точки Т, прямая ОТ встречает окружность г еще в точке Т1. Заметим, что точки Р и Р1 расположены по одну сторону от точки О, так что точка О расположена вне окружности г. В силу известного свойства секущих, проведенных из одной и той же точки к окружности, ОТ ОТ1 = ОР ОР1 = r2. И так как ОТ = r, то и ОТ1 = r. Следовательно, точка Т1 должна совпасть с точкой Т, вопреки допущению. Итак, ОТ – касательная к окружности г. Следовательно, окружности щ и г ортогональны.

Теорема. Если окружность проходит через две взаимно инверсные точки, то при инверсии она преобразуется в себя.

Доказательство. Пусть окружность г проходит через точки Р и Рґ, инверсные относительно окружности щ (О, r). Тогда ОР ОРґ = r2. Ясно, что точка О вне окружности г. Пусть Q – произвольная точка на окружности г (рис. 25).

Рис.25

Проведем луч ОQ, и пусть он встречает окружность г в точках Q и Qґ (в случае касания луча ОQ с окружностью г Qґ≡ Q), тогда ОQ OQґ = OP OPґ = r2, т. е. точка Qґ инверсна точке Q. Итак, если какая-либо точка лежит на окружности г, то инверсная ей точка также лежит на этой окружности. Отсюда заключаем, что при инверсии окружность г преобразуется в себя.

Следствие. Окружность, проходящая через две взаимно инверсные точки, ортогональна к базисной окружности инверсии. Все окружности, проходящие через две взаимно инверсные точки, образуют эллиптический пучок, состоящий из окружностей, ортогональных базисной окружности инверсии.

Пусть через точку М проходят две линии г1 и г2. предположим, что существует единственная касательная к каждой из этих линий в точке М. пусть при инверсии точка м преобразуется в точку М′, а линии г1 и г2 соответственно в линии г1′ и г2′. Оказывается, что угол между линиями г1′ и г2′ в точке М′ равен углу между линиями г1 и г2 в точке М.

Лемма. Если при инверсии относительно окружности щ (О, r) точка М и проходящая через нее линия г преобразуется в точку М′ и линию г′, то линии г и г′ в этих точках образуют с прямой ОМ равные углы.

Рис. 26

Доказательство. Пусть Р (рис. 26) – произвольная точка на линии г, Р′ - ей инверсная точка; тогда Р′ лежит на г′.

Соединим М с Р, М′ с Р′. В силу леммы об антипараллельных прямых ∟ММ′Р′ = ∟МРО или ∟ММ′Р′ = ∟М′МР - ∟МОР (1).

Пусть при неограниченном приближении точки Р вдоль линии г к точке М секущая МР стремится к положению МА, так что МА - касательная к линии г в точке М. Пусть ∟М′МА = ц. Тогда

lim ∟М′МР = ц.

P → M

В то же время, когда Р стремится к М вдоль линии г, угол МОР стремится к нулю. Поэтому, в силу равенства (1), угол ММ′Р′ также стремится к определенному пределу, равному ц. Таким образом, когда Р стремится к М вдоль линии г (и, следовательно, Р′ стремится к М′ на линии г′), секущая М′Р′ стремится к некоторому предельному положению М′А′. А′М′ - касательная к г′ в точке М′ (по определению касательной). Мы видим, что ∟ММ′А′ = ц. Лемма доказана.

Теорема. Если две линии г1 и г2 и точка их пересечения М преобразуются в некоторой инверсии соответственно в линии г1′ и г2′ и точку М′, то угол между линиями г1 и г2 в точке М равен углу между линиями г1′ и г2′ в точке М′.

Рис. 27

Доказательство. Пусть а1 и а2 – касательные к г1 и г2 в точке М, а1′ и а2′ - касательные к г′1 и г′2 в точке М′ (рис. 27).

Будем предполагать, что ни одна из прямых а1 и а2 не совпадают с прямой ОМ, где О центр инверсии; в противном случае доказательство только упрощается. Прямой ММ′ плоскость разбивается на две полуплоскости. Выберем в одной из них на каждой прямой а1, а2 и а′1, а′2 по одной точке: А1 и А2; А1′ и А2′. В силу леммы

∟М′МА1 = ∟ ММ′А1′ (2)

∟М′МА2 = ∟ ММ′А2′ (2′).

Пусть для определенности ∟М′МА2 < ∟М′МА1, отсюда ∟А2МА1 = ∟М′МА1 - ∟М′МА2 и ∟ А2′М′А1′ = ∟ ММ′А1′ - ∟ ММ′А2′ , так что в силу равенств (2) и (2′) ∟А1′М′А2′ = ∟А1МА2. Теорема доказана.

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.