скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Совершенствование системы неразрушающего контроля качества изделий на предприятиях машиностроительного профиля

Крупногабаритные изделия контролируют, как правило, по частям.

Правильность монтажа деталей в производстве, состояние и взаимное расположение закрытых деталей в период эксплуатации в собранных агрегатах проверяют только методами просвечивания.

Зоны контроля. Контролю непосредственно на изделии подвергают отдельные зоны. Определение зон контроля является важным фактором в выборе метода, так как знание их облегчает разработку методики и обнаружение дефектов. При этом следует иметь в виду, что методом вихревых токов практически невозможно проверить зоны немагнитного материала непосредственно у неравномерно распределенных ферромагнитных масс; ультразвуковой контроль поверхностными волнами – неприменим, если в проверяемой зоне имеются резкие переходы от одного сечения к другому. Кроме того, в подлежащей ультразвуковому контролю зоне, как правило, не должно быть отверстий, заклепок, болтов и других отражателей ультразвуковой энергии. В некоторых случаях контроль таких объектов возможен при условии применения специальной методики и искательных ультразвуковых головок.

Для токовихревого контроля радиусы галтельных переходов должны быть не менее 2 мм, а для капиллярного и магнитопорошкового методов в зоне контроля не должно быть уступов с углом менее 90°, подрезов и наплывов металла. Ширина проточек, радиусы галтелей и отверстий в зоне капиллярного контроля должны быть не менее 3 мм.

Состояние и чистота обработки контролируемой поверхности. Чувствительность методов, особенно магнитопорошковых и капиллярных, зависит от чистоты обработки контролируемой поверхности и наличия на ней защитных покрытий.

Проведем сравнительный анализ некоторых методов НК табл. 1


Характерные особенности и области применения распространенных методов НК

Метод НК Дефекты Область применения Преимущества Недостатки
1 2 3 4 5
Визуально-оптический Относительно крупные трещины, механические и коррозионные повреждения поверхности, нарушения сплошности защитных покрытий, остаточные деформации, изменения характера неразъемных соединений, течь, следы износа и др. Осмотр деталей и узлов как снятых, так и непосредственно в конструкции

1. Возможность осмотра больших поверхностей деталей из различных материалов, имеющих разную форму

2. Возможность проведения эффективного контроля в труднодоступных местах конструкции

1. Низкая вероятность обнаружения мелких поверхностных дефектов

2. Зависимость выявляемости дефектов от субъективных факторов (острота зрения, усталость оператора, опыт работы) и условия контроля (освещенность, оптический контраст и др.)

Цветной (с применение составов) Поверхностные открытые трещины, поры, и коррозионные поражения Контроль деталей и улов в основном из немагнитных материалов

1. Возможность контроля деталей, различных по размерам и форме.

2. Высокая чувствительность метода и достоверность результатов контроля

3. Простота технологии контроля.

4. Наглядность и документальность результатов контроля

1. Необходимость удаления с контролируемой поверхности защитных покрытий, смазок, окалины и других загрязнений.

2. Относительно высокая трудоемкость ручного контроля.

3. Большая длительность процесса контр.

Магнитнопорошковый Поверхностные и подповерхностные дефекты – трещины, волосовины, неметаллические включения, флокены, надрывы и др. Контроль полуфабрикатов, деталей и узлов из ферромагнитных материалов

1. Возможность контроля деталей различных по размерам и форме

2. Высокие чувствительность, производительность и достоверность результатов контроля

3. Простота методики контроля.

4. Документальность результатов контроля

1. Необходимость удаления относительно толстых защитный покрытий

2. Сложность автоматизации всего процесса контроля

3. В ряде случаев затруднена расшифровка результатов контроля в связи с выявлением мнимых дефектов

Токовихревой Открытые и закрытые поверхностные и подповерхностные дефекты Контроль полуфабрикатов, деталей и узлов из электропроводных материалов. Метод эффективен для локального контроля снятых деталей и в конструкции (накладными датчиками)

1. Возможность выявления трещин без удаления защитных покрытий, окислов и смазок

2. Возможность выявления малораскрытых трещин, перекрытых «мостиков» деформированного металла

3. Возможность безконтактного контроля

4. Большая скорость и незначительная трудоемкость ручного контроля небольших поверхностей

1. Зависимость чувствительности метода от размеров датчика, которые ограничены возможностями технологии его изготовления. В связи с чем она по глубине распространения трещин ниже магнитного и цветного

2. Отсутствие наглядности результатов контроля (косвенные наблюдения)

Ультразвуковой импульсный эхо-метод Внутренние скрытые дефекты, а также поверхностные трещины, главным образом возникающие в труднодоступных местах конструкции Контроль полуфабрикатов, деталей и узлов из магнитных и немагнитных материалов, обладающих свойствами упругости

1. Высокая чувствительность

2. Возможность выявления поверхностных и внутренних дефектов при одностороннем доступе к проверяемому объекту и на значительном расстоянии от места ввода ультразвуковых колебаний

3. Высокая производительность и низкая стоимость контроля

4. Относительная простота автоматизации контроля

1. Необходимость разработки специальных методик и ультразвуковых искателей для каждой контролируемой детали

2. Относительная сложность расшифровки результатов контроля, определение места расположения, размера и характер дефектов

3. Относительная трудность, а в ряде случаев невозможность контроля деталей сложной формы и с грубой поверхностью

Рентгено-графический Внутренние скрытые дефекты, дефекты закрытых деталей Контроль полуфабрикатов деталей, узлов и агрегатов

1. Возможность контроля деталей различной формы. Большая интенсивность излучения и возможность регулирования его энергии

2. Документальность результатов контроля

1. Громоздкость и сложность рентгеновской аппаратуры

2. Относительно низкая чувствительность к усталостным трещинам

3. Недостаточная технологическая маневренность при просвечивании в полевых условиях и в условиях монтажа конструкции

4. Относительно низкая производительность и более высокая стоимость контроля на внутренние дефекты по сравнению с ультразвуковым методом

5. Необходимость устройства защиты работающих от рентгеновского излучения


Из рассмотренных неразрушающих методов контроля наибольшее практическое применение находят методы акустического вида контроля.

Около 90% объектов, контролируемых акустическими методами, проверяют эхо-методом. Применяя различные типы волн, с его помощью решают задачи дефектоскопии поковок, отливок, сварных соединений, многих неметаллических материалов.

Контроль отливок. Ультразвуковой контроль отливок проводится эхо- и зеркально-теневым методами, обычно с помощью нормальных преобразователей. Дефекты литья (поры, раковины, шлаковые включения) имеют объемный характер и могут быть обнаружены при прозвучивании с разных сторон. Поэтому контроль ведут, как правило, в одном направлении по кратчайшему расстоянию от поверхности, удобной для ввода УЗК. Однако имеются опасные зоны, которые должны быть проверены в направлении, перпендикулярном к плоскости наиболее вероятного развития трещин. Кроме того, в отливках встречаются волосовидные дефекты, плохо отражающие ультразвук. О наличии таких дефектов судят по ослаблению донного сигнала.

Ввиду того, что поверхность отливок шероховатая и сложной формы, целесообразно применять специальные преобразователи для контроля грубой поверхности. Вогнутые переходные поверхности удобно контролировать преобразователями с локальной ванной в форме катка.

Ультразвуковому контролю следует подвергать стальные отливки после высокотемпературной термической обработки, измельчающей структуру. Частота ультразвуковых колебаний 1 - 2 МГц. Чувствительность дефектоскопа обычно настраивают по плоскодонным отражателям площадью 7 - 80 мм2. Удовлетворительно контролируются отливки центробежного литья (например, трубы).

Чугун контролируется хуже, чем стальные отливки. Наибольшую чувствительность удается получить при контроле отбеленного чугуна и чугуна с шаровидным графитом. Значительно хуже контролируется чугун, особенно при наличии крупных графитных включений.

Эхо-метод применяют для обнаружения грубых дефектов в слитках из различных металлов и сплавов, предназначенных для изготовления изделий ответственного назначения. Простая форма слитка благоприятствует контролю. Однако слитки имеют крупнозернистую структуру, что требует уменьшения частоты и снижает чувствительность метода контроля. Слитки из углеродистой стали могут быть прозвучены на толщину до 1 м при частоте 0,25 -1 МГц. Слитки из легированной стали прозвучиваются значительно хуже. Слитки из титановых и алюминиевых сплавов могут быть проконтролированы на глубину не более 1 м при частоте 1 - 1,5 МГц. Для обеспечения акустического контакта вдоль боковых поверхностей слитка зачищают полосы шириной 50 -70 мм от окалины и других неровностей.

Контроль поковок и штамповок. Поковки (типа роторов и дисков турбин, заготовок штампов, станин, валов, деталей самолетов, в том числе из легких сплавов, и.т.п.) контролируют эхо-методом. В этих изделиях могут быть выявлены флокены, остатки усадочных раковин, инородные включения, окисные плены, ликвационные скопления и другие внутренние дефекты, которые практически невозможно обнаружить просвечиванием. Контроль ведется на частоте 2 - 5 МГц эхо- и зеркально-теневым методами. Для ответственных изделий предусматривается прозвучивание каждого объема в трех взаимно перпендикулярных направлениях или близких к ним. Поковки менее ответственного назначения контролируют прямым преобразователем по поверхности, со стороны которой производится последний этап ковки, так как большинство дефектов расположено параллельно этой поверхности. Наклонными преобразователями контролируют участки, опасные с точки зрения возможного возникновения трещин, а также места, где обнаружены дефекты прямым преобразователем.

Уровень фиксации устанавливают в пределах 3-20 мм2. Недопустимыми считают дефекты с эквивалентной площадью 3 - 70 мм2 в зависимости от толщины изделия. Кроме того, накладываются ограничения на протяженность дефектов, их число и суммарную эквивалентную площадь на определенной площади поверхности изделия.

Штамповки имеют часто сложную форму. Их контроль проводится эхо-методом продольными волнами при частоте 2 - 5 МГц. Волны рекомендуется направлять перпендикулярно к поверхности металла. В этом случае эффективно применение иммерсионных установок, в которых преобразователь автоматически ориентируется в требуемом направлении.

Контроль проката я проволоки. Листы и плиты толщиной 6 - 60 мм контролируют теневым, эхо-, эхо-сквозным и зеркально-теневым методами на частотах 2-3 МГц. При контроле эхо-методом чувствительность фиксации устанавливают по плоскодонным отверстиям площадью 7; 19,6; 50,2 мм2. Для других методов чувствительность фиксации устанавливается по ослаблению донного или сквозного сигнала.

Листы толщиной более 60 мм контролируют эхо- (совместно с зеркально-теневым) или эхо-сквозным методом. Преимуществом последнего является независимость показаний прибора от перемещения листа между преобразователями при иммерсионном контроле.

Листы толщиной 3 мм и менее эффективно контролировать эхо- и теневым методом с использованием волн Лэмба. Одним или двумя преобразователями можно проконтролировать полосу шириной 0,3 - 0,5 м при скорости ее движения 0,5 м/с.

Контроль листов и заготовок при 900 -1000° С позволяет своевременно выявить часть металла, подлежащую обрезке. Для возбуждения и приема УЗК применяют ЭМА-способ или помещают преобразователи в канал, расточенный в валках прокатного стана. Акустический контакт при этом, достигается путем сильного прижатия валка к поверхности листа или заготовки.

Прутки и заготовки круглого и прямоугольного сечений контролируют эхо-методом прямыми (иногда также наклонными) преобразователями. Прокат делят на четыре группы качества в зависимости от условий протяженности дефектов. В случае, если требуется контролировать только центральную часть прутка, используют три преобразователя, расположенных вокруг прутка с углом между осями 60°. Пруток перемещают поступательно, сканирования по всей поверхности не производят.

Бесшовные металлические трубы проверяют эхо-методом с помощью иммерсионных установок с локальными ваннами.

Для проверки всего металла трубы необходимо обеспечить взаимное перемещение преобразователя и трубы по винтовой линии. Более производителен способ, при котором преобразователи вращаются вокруг поступательно-движущейся трубы.

1.2 Виды и характеристики дефектов контролируемых объектов обнаруживаемых на основных этапах жизненного цикла изделий

Многолетний опыт исследования отказов машин и механизмов свидетельствует о том, что основным видом разрушения деталей из различных металлических материалов является разрушение от усталости. Причину указанного вида разрушения весьма многообразны. К их числу относятся: например, низкое качество материала или изготовления деталей, недостаточная конструктивная прочность, нарушение требований эксплуатации и т.д.

С точки зрения неразрушающего контроля деталей и изделий из металлических материалов все виды несовершенства в металлах вне зависимости от природы их образования (нарушение в металлургии, технологии, эксплуатации) целесообразно рассмотреть с позиции: дефект есть или дефект отсутствует

Дефект – каждое отдельное несоответствие продукции требованиям, установленным нормативной документацией.

Дефект может существовать на каждом этапе жизненного цикла изделий.

Обеспечение на стадии проектирования свободных подходов к контролируемым деталям исключает в эксплуатации необходимость доработки конструкции изделий для проведения контроля.

На основе анализа расчетных напряжений, результатов статических и динамических испытаний, а также статистики отказов при эксплуатации аналогичных по конструкции образцов техники конструктор должен определить, какие высоко нагруженные детали и узлы подлежат НК в процессе эксплуатации, где места возможного возникновения на них усталостных трещин и зоны контроля.

Конструктор должен указать методы и средства НК, в том числе и устройства встроенного дефектоскопического контроля объектов, возможность контроля которых должна быть обеспечена в запланированном объеме. Если невозможно использовать известные методы и средства контроля, необходимо разработать и рекомендовать новые.

Конструктор должен разработать техническую документацию по дефектоскопическому контролю, включающую перечень контролируемых объектов и схемы размещения их на изделии, рекомендуемые методы, средства и технологию контроля, критерии браковки, последовательность выполнения контроля, порядок введения контроля в условиях эксплуатации изделия и последующего расширения его объема. Кроме того, должны быть определены, продолжительность и необходимые трудозатраты на подготовку, и выполнение контрольных операций.

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.