скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Совершенствование системы неразрушающего контроля качества изделий на предприятиях машиностроительного профиля

Дипломная работа: Совершенствование системы неразрушающего контроля качества изделий на предприятиях машиностроительного профиля

Список используемых сокращений

НК неразрушающий контроль

РУЗК – ручной ультразвуковой контроль

АУЗК – автоматизированный ультразвуковой контроль

ЛНМК – лаборатория неразрушающих методов контроля

СНК – система неразрушающего контроля


Аннотация

Работа посвящена совершенствованию системы неразрушающего контроля изделий на предприятиях машиностроительного профиля.

Произведен анализ системы неразрушающего контроля на предприятиях. Представлены общие сведения и основные требования предъявляемые к контролю. Описаны основные виды и характеристики дефектов обнаруживаемых в процессе сканирования. Выделены основные факторы влияющие на качество неразрушающего контроля.

С целью повышения эффективности системы неразрушающего контроля предложен процессный подход. Определено место контроля на различных этапах процесса изготовления изделий, структура и средства управления. На примере предприятия ОАО «Тяжпромарматура» реализован процессный подход к организации НК.

Рассмотрена перспектива автоматизированной системы неразрушающего контроля деталей и узлов машин и основные направления ее совершенствования. На основе совершенствования обобщений экспериментальных данных выполнен сравнительный анализ ручного и автоматизированного контроля.

В результате проведенной работ на основе процессного подхода предложен комплекс средств и мероприятий по повышению эффективности НК в процессе производства изделий машиностроительного профиля.


Содержание

Введение

Глава 1. Анализ системы неразрушающего контроля на предприятиях

1.1 Общие сведения о неразрушающем контроле и требования к нему

1.2 Виды и характеристики дефектов контролируемых объектов обнаруживаемых на основных этапах жизненного цикла изделий

1.3 Причины «перебраковки» и пропуска дефектов в процессе контроля

1.4 Факторы, влияющие на качество неразрушающего контроля изделий

1.5 Недостатки организации системы контроля на предприятиях

Глава 2. Процессный подход к системе неразрушающего контроля

2.1 Место НК в процессе производства

2.2 Организация неразрушающего контроля

2.3 Проведение дефектации и управление несоответствующей продукцией

Глава 3. Перспектива автоматизации системы неразрушающего контроля изделий на предприятиях машиностроительного профиля

3.1 Комплексная технология АУЗК

3.2 Сопоставление результатов АУЗК и РУЗК

Заключение

Список использованных источников


Введение

Повышение уровня надежности и увеличение ресурса машин и других объектов техники возможно только при условии выпуска продукции высокого качества во все отраслях машиностроения. Это требует непрерывного совершенствования технологии производства и методов контроля качества. В ряде случаев выборочный контроль исходного металла, заготовок, полуфабрикатов и готовых изделий ответственного назначения не гарантирует их высокое качество, особенно при серийном и массовом изготовлении. В настоящее время все более широкое распространение получает 100%-ный неразрушающий контроль продукции на отдельных этапах производства.

Задача существенного улучшения качества промышленной продукции, а, следовательно, повышение надежности и долговечности машин может быть успешно решена при условии совершенствования производства и методов контроля качества продукции.

Контроль качества продукции заключается в проверке соответствия показателей ее качества установленным требованиям. Важными критериями высокого качества деталей машин являются физические, геометрические и функциональные показатели, а также технологические признаки качества, например, отсутствие недопустимых дефектов типа нарушения сплошности материала, и покрытия, геометрических размеров и чистоты обработки поверхности требуемым технической документацией и др.

В современных условиях стремительного научно-технического прогресса роль неразрушающего контроля значительно возросла. Его применение на машиностроительных заводах и при эксплуатации машин в различных областях народного хозяйства дает значительный технический и экономический эффект. Использование его в эксплуатации позволяет обеспечить высокую надежность и долговечность машин.


Глава 1. Анализ системы неразрушающего контроля на предприятиях

1.1Общие сведения о неразрушающем контроле и основные требования к нему

Применение НК предшествует разработка модели, отражающей изменение свойств материалов и изделий по характерным признакам. НК заключается в проверке физическим методом соответствия показателей качества контролируемой продукции установленным требованиям без нарушения ее свойств, функционирования и пригодности к применению.

Существующие средства НК предназначены для выявления дефектов типа нарушения сплошности материала изделий; оценки структуры материала изделий; контроля геометрических параметров изделий; оценки физико-химических свойств материала изделий.

НК основан на получении информации о качестве проверяемых материалов и изделий при взаимодействии их с веществами или физическими полями в виде электрических световых, звуковых или иных сигналов. Современные методы НК в соответствии с ГОСТ 18353-79 подразделяются на девять основных видов: радиационный, акустический, магнитный, вихретоковый, электрический, радиоволновой, тепловой, оптический, а также проникающими веществами (молекулярный).

Методы каждого вида НК классифицируют по характеру взаимодействия физических полей или веществ с контролируемым объектом, первичным информативным признакам и способам получения первичной информации.

· МАГНИТНЫЙ КОНТРОЛЬ – основан на анализе взаимодействия магнитного поля с контролируемым объектом. Физические основы магнитного контроля заключаются в использовании магнитных свойств материалов, в частности, размагничивающего фактора, магнитного сопротивления и преломления магнитных силовых линий.

· ЭЛЕКТРИЧЕСКИЙ КОНТРОЛЬ – основан на регистрации параметров электрического поля, взаимодействующего с контролируемым объектом, или возникающего в контролируемом объекте в результате внешнего воздействия.

· ВИХРЕТОКОВЫЙ КОНТРОЛЬ – основан на взаимодействии электромагнитного поля вихретокового преобразователя с электромагнитным полем вихревых токов, наводимых в контролируемом изделии, плотность которых зависит от свойств материалов.

· РАДИОВОЛНОВОЙ КОНТРОЛЬ – основан на использовании взаимодействия радиоизлучений с материалами контролируемых изделий. Он наблюдается в процессе поглощения, дифракции, отражения, преломления падающей волны или взаимодействия падающей или отраженных волн. Кроме того, в радиодефектоскопии могут использоваться специфические резонансные эффекты взаимодействия радиоволнового излучения.

· ТЕПЛОВОЙ КОНТРОЛЬ – основан на регистрации изменений тепловых или температурных полей контролируемых объектов, вызванных дефектами.

· ОПТИЧЕСКИЙ КОНТРОЛЬ – основан на взаимодействии светового излучения с поверхностью контролируемого объекта. При падении света с потоком излучения на материал происходит разложение его на составляющие. В зависимости от свойств материала это разложение может быть различным.

· АКУСТИЧЕСКИЙ КОНТРОЛЬ – основан на использовании ультразвуковых волн. Колебания в деформируемой среде распространяются в виде волны. Совокупность частиц, обладающих одинаковой фазой колебаний, образует поверхность или фронт волны. Фронт волны расположен перпендикулярно к направлению распространению волны.

· МОЛЕКУЛЯРНЫЙ (КОНТРОЛЬ ПРОНИКАЮЩИМИ ВЕЩЕСТВАМИ) – основан на проникании веществ и регистрации индикаторного рисунка открытой поверхности.

· РАДИАЦИОННЫЙ КОНТРОЛЬ – основан на регистрации и анализе ионизирующего излучения при его взаимодействии с контролируемым изделием. К ионизирующим излучениям относят рентгеновские и гамма-излучения, а также потоки заряженных или нейтральных частиц. Рентгеновское излучение является электромагнитным излучением и возникает в рентгеновской трубке при торможении ускоренных электронов. Кинетическая энергия тормозящих электронов превращается в электромагнитную энергию, излучаемую в виде фотонов.

К НК предъявляются следующие основные требования:

1)  возможность осуществления эффективного контроля на различных стадиях изготовления, в эксплуатации и ремонте изделий;

2)  возможность контроля качества продукции по большинству заданных параметров;

3)  согласованность времени, затрачиваемого на контроль, с временем работы другого технологического оборудования;

4)  высокая достоверность результатов контроля;

5)  возможность механизации и автоматизации контроля технологических процессов, а также управления ими с использованием сигналов, выдаваемых средствами НК;

6)  высокая надежность дефектоскопической аппаратуры и возможность использования ее в различных условиях;

7)  простота методики контроля, техническая доступность средств контроля в условиях производства, ремонта и эксплуатации.

В современных условиях при большом разнообразии методов и приборов необходим тщательный анализ для выбора наиболее эффективного и экономичного НК. Принцип выбора методов НК материалов и изделий основывается на их классификационных признаках [5]. Основными признаками являются: характер взаимодействия физических полей или веществ с контролируемым объектом, первичная информационная характеристика, индикация первичной информации, окончательная информация. Каждый метод имеет свою область наиболее эффективного применения.

Для выбора методов или комплекса методов НК должны быть определены вид дефектов, подлежащих выявлению, объекты (зоны) контроля, их характеристики и условия контроля, а также должны быть заданы критерии на отбраковку. По эти данным руководствуясь табл. 4 [1], определяют возможные методы, позволяющие решить поставленную задачу. Затем, принимая во внимание критерии на отбраковку, чувствительность и специфику методов, выбирают методы и средства НК для применения. При равной чувствительности предпочтение отдается тому методу, который проще и доступнее в конкретных условиях применения, у которого выше достоверность результатов контроля и производительность.

Выбранные методы контроля полуфабрикатов фиксируются в нормативной технологической документации.

На практике в некоторых случаях могут встретиться задачи, для решения которых применение того или иного широко распространенного метода может оказаться недостаточно эффективным [4]. В этих случаях научно-исследовательские институты и заводы промышленности разрабатывают новые специальные методы, средства и методики НК.

При выборе метода или комплекса методов для дефектоскопического контроля конкретных деталей или узлов необходимо учитывать, кроме специфических особенностей и технических возможностей каждого метода, следующие основные факторы: характер (вид) дефекта и его расположение, условия роботы деталей и ТУ на отбраковку, материал детали, состояние и чистоту обработки поверхности, форму и размер детали,, зоны контроля, доступность детали и зоны контроля, условия контроля.

Характер (вид) подлежащих выявлению дефектов важный фактор при выборе метода. В зависимости от происхождения дефекты различаются размерами, формой и средой, заполняющей их полости. Так, например, трещины имеют протяженную форму с различным раскрытием и глубиной. В полости трещин могут быть окислы, смазка, нагар и другие загрязнения. Трещины характерны резкими очертаниями, а неметаллические включения, закаты и заковы часто бывают округлой формы. Поэтому, учитывая особенности дефекта, который необходимо обнаружить, выбирают метод ПК для падежного его выявления. Так, для обнаружения поверхностных трещин с малой шириной раскрытия (0,5—5 мкм) на деталях из ферромагнитных материалов наиболее эффективным является магнитный, а из немагнитных материалов — токовихревой или капиллярный метод и совершенно непригоден, например, рентгенографический. Для выявления внутренних скрытых дефектов целесообразно применять радиационные или ультразвуковые методы.

Место расположения возможных дефектов на детали. Дефекты подразделяют на поверхностные, подповерхностные (залегающие на небольшой глубине — до 0,5—1 мм) и внутренние (залегающие на глубине более 1 мм).

Для выявления поверхностных дефектов применимы все методы, но в ряде случаев наиболее эффективны из них магнитопорошковый и капиллярные. Для обнаружения подповерхностных дефектов эффективны ультразвуковой, токовихревой, магнитопорошковый, а внутренних — только ультразвуковой и методы просвечивания ионизирующими излучениями.

Условия работы детали: характер внешних нагрузок (статические, динамические, вибрационные), возможные перегрузки, внешняя среда, в которой работает деталь, возможность эрозионно-коррозионного поражения, температурные условия и др. Многие ответственные детали испытывают значительные знакопеременные нагрузки, работают в агрессивной среде, при высоких температурах и в запыленном воздухе (при работе, например, двигателей на земле). Ряд деталей подвергается эрозионно-коррозионному воздействию. Любые конструктивные или производственные дефекты могут явиться очагами усталостного разрушения, особенно при работе детали в условиях сложного напряженного состояния или воздействия агрессивных сред, ускоряющих разрушение.

Учет условий работы деталей позволяет определить критические места конструкции и обратить на эти места особое внимание при выборе метода и проведении контроля.

Технические условия на отбраковку определяют количественные критерии ее и играют важную роль при выборе методов, обеспечивающих выявление только опасных дефектов.

Например, для контроля поверхности лопаток газовых турбин вдали от кромок, где допускаются 'мелкие точечные эрозионно-коррозионные поражения и микро-растрескивание, ограничиваются лишь двумя методами: визуально-оптическим и одним из капиллярных (люминесцентным, цветным) или токовихревым. Для контроля кромок, на которых согласно ТУ не допускаются никакие нарушения сплошности материала, применяют три метода в комплексе, исходя из особенностей и технических возможностей каждого метода: капиллярным — цветным проверяют наличие на всей поверхности поверхностных трещин, пор, коррозионных поражении;

Если в ТУ отсутствуют строго определенные критерии браковки или нормы на отбраковку установлены неправильно (не на основе испытаний, а исходя из страха риска), то возможна необоснованная отбраковка деталей, что может нанести экономический ущерб.

Физические свойства материала деталей — это постоянно действующий фактор, определяющий в значительной степени выбор метода НК. Так, для применения магнитопорошкового метода материал детали должен быть ферромагнитным и однородным по магнитным свойствам структуры: не должно быть, например, карбидной полосчатости, аустенитных включений, резких переходов от одной структуры к другой, различающихся магнитными свойствами. Для токовихревого контроля материал должен быть электропроводным, однородным по структуре и изотропным .по магнитным свойствам. Для ультразвукового контроля на трещины материал также должен быть однородным, мелкозернистым по структуре, должен обладать свойствами упругости и малым коэффициентом затухания ультразвуковых колебаний, а для капиллярных методов — должен быть непористым и стойким к воздействию органических растворителей.

Применение методов просвечивания ионизирующими излучениями ограничивается лишь способностью материала поглощать данное излучение и толщиной материала.

Форма и размеры контролируемых деталей. Некоторые методы (магнитный, капиллярный, просвечивание рентгеновским и γ-излучением) могут применяться для контроля большинства деталей различной формы и размеров. Детали простой формы можно проверять всеми методами, в то время как применимость некоторых методов для контроля деталей сложной формы ограничена, например ультразвукового — из-за трудности расшифровки результатов контроля и наличия мертвых зон — непрозвучиваемых участков; капиллярного — из-за трудности выполнения отдельных операций, особенно операций подготовки деталей к контролю и удаления с поверхности проникающей жидкости.

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.