скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Кариотип человека

Реферат: Кариотип человека

Содержание.

Введение..................................................................................................... 1

Глава 1. Митотические хромосомы........................................................... 2

Глава 2. Мейотические хромосомы........................................................... 5

Глава 3. Цитогенетический метод............................................................ 13

Глава 4. Половой хроматин.................................................................... 20

Глава 5. Мозаицизм................................................................................. 23


Введение.

Одним из ключевых вопросов генетики человека является вопрос о строении и функционировании материальных ос­нов наследственности. Сведения по каждому из трех уров­ней организации наследственных структур (генному, хро­мосомному, геномному) накапливаются в последние годы с удивительной быстротой, и можно надеяться, что недале­ко то время, когда будет составлена довольно цельная картина наследственности человека. Уже и сейчас по это­му вопросу человека можно отнести к числу наилучшим образом изученных объектов наряду с дрозофилой, мышью, кукурузой.[1]

Для правильного понимания значения наследственно­сти в патологии человека необходимо иметь подробные сведения по трем частично взаимосвязанным разделам:

1) по морфологическому и химическому строению хромо­сом и кариотипа в целом; 2) по дискретным признакам человека, контролируемым единичными генами («инвента­ризация» единиц наследственной изменчивости); 3) по «ар­хитектонике» генов в хромосомах (сцепление генов и кар­ты хромосом). По каждому из этих разделов накоплено много данных, их интенсивная разработка продолжается как в теоретическом, так и прикладном (клиническом) ас­пектах.

Принципы и основные разделы общей цитогенетики сформировались в течение 20-х и 30-х годов в основном благодаря исследованиям, проведенным на дрозофиле и не­которых растениях. Цитогепетика человека и млекопитаю­щих, занимающая ведущее место в современой цитогенетике, развилась позже, главным образом в связи с методи­ческими трудностями.

Историю развития цитогенетики человека можно раз­делить на три периода. Первый охватывает период с прош­лого века до середины 50-х годов и имеет сейчас сугубо исторический интерес. Это были поиски методических под­ходов к получению препаратов хромосом человека заме­чательными своей настойчивостью и трудолюбием цитологами того времени (А. Г. Андрес, 1934). Хотя нашими цитогенетиками А. Г. Андресом и М. С. Навашиным были правильно описаны первые 10 пар крупных хромосом, од­нако не было достоверно установлено даже общее число хромосом в клетках человека. Неизвестной оставалась так­же их морфология.

Второй период, начало которому было положено рабо­той Tjio и Levan в 1956 г., характеризовался возникнове­нием и бурным развитием современной цитогенетики чело­века. Довольно быстро были разработаны все основные ме­тодические приемы хромосомного анализа, получены фун­даментальные сведения о кариотипе человека, об основных особенностях строения и функционирования его нормаль­ных хромосом. Именно в этот период зародилась медицин­ская цитогенетика, которая открыла новую область пато­логии человека, обусловленную изменением числа или структуры хромосом.

Третий период развития цитогенетики человека начался в 70-х годах. Его по праву можно считать началом совре­менного этапа в развитии науки о цитологических основах наследственности человека. Ряд методических нововведе­ний обеспечили переход цитогенетики на качественно иной уровень. Реализовалась возможность изучения индивиду­альности хромосом человека и даже их участков. Это сра­зу подняло на новый уровень медицинскую цитогенетику. Стало возможным исследовать комплексно морфологию, функцию, химические особенности строения и надмолеку-лярную организацию хромосом человека. Развитие в эти же годы методов генетического картирования хромосом че­ловека обеспечило решение самой сложной задачи — соз­дание генетических карт хромосом.

Таким образом, современная цитогенетика человека представляет собой богатую фактическим материалом, раз­ветвленную самостоятельную область генетики человека. В настоящее время задача идентификации всех элемен­тов человеческого кариотипа при анализе на стадии мито­за решена на основе применения дифференциальных ок­расок хромосом.

Хромосомы как индивидуаль­ные структуры становятся доступными для исследова­ния после значительного уко­рочения и утолщения, кото­рые они испытывают в период подготовки клетки к деле­нию. Для соматических клеток таким делением является митоз, для генеративных — сначала митоз, а затем мейоз.

Глава 1. Митотические хромосомы.

Основные сведения о хромо­сомном наборе человека в целом и об индивидуальных хромосомах получены в результате изучения хромосом в метафазе митоза. На этой стадии митоза отчетливо видно, что диплоидный набор хромосом человека состоит из 46 элементов: 22 пар аутосом и одной пары половых хромо­сом (XX у женщин и XY у мужчин). На стандартно окрашенных препаратах форма метафазных хромосом оп­ределяется местоположением первичной перетяжки, кото­рая формируется благодаря деконденсации функционирую­щего в метафазе центромерного района. В отдельных хро­мосомах могут существовать дополнительные перетяжки, называемые вторичными. В случае локализации такой перетяжки на конце хромосомы отделяемый ею дистальный участок хромосомы называется спутником.

По форме и общим размерам все аутосомы человека лег­ко подразделяются на 7 групп, обозначаемых латинскими буквами от А до G (рис. 8). Помимо этого, все аутосомы в порядке уменьшения общей длины нумеруются (от 1 до 22).

Длина одной и той же хромосомы в митозе значительно варьирует, поскольку и в стадии метафазы продолжается процесс естественной конденсации хромосомы, который значительно усиливается колхицином. Поэтому для идентификации служит показатель относительной, а не абсолют­ной длины хромосомы. Однако его надежность ограничива­ется тем, что хромосомы обладают разной длиной, а в дан­ной хромосоме плечи разных размеров сокращаются неодинаково: укорочение более длинных происходит быст­рее по сравнению с короткими. Это не отражается на ука­занной выше групповой характеристике, но препятствует идентификации близких по размеру и форме хромосом внутри групп. Затруднения в индивидуальной идентифика­ции хромосом усиливаются также тем, что дифференциаль­ная конденсация может иметь место и между гомологичными хромосомами, обусловливая гетероморфизм гомоло­гов. В настоящее время потребность в использовании метода морфометрии и определяемых с ее помощью линей­ных параметров хромосомы фактически отпала в связи с введением в практику хромосомного анализа дифференци­альных окрасок хромосом.[2]

Анализ спонтанных вторичных перетяжек, включая спутничные, заметно не облегчает распознавание отдель­ных хромосом. С их помощью наиболее регулярно можно выделить аутосому 9, часто обладающую значительной пе­ретяжкой в околоцентромерном районе длинного плеча. Спутничной перетяжкой обладают все десять акроцентрических хромосом человека, a D- или G-хромосомы по это­му признаку в пределах групп не различаются.

Морфологическая однородность хромосомы по длине, как она вырисовывается при микроскопическом изучении метафазных хромосом на рутинно приготовленных и ок­рашенных препаратах, на самом деле оказывается обман­чивой. Методический прогресс в цитогенетике человека и высших эукариотов в целом, который имел место на про­тяжении последних 15—20 лет, привел к открытию глубо­кой линейной дифференцированности хромо­сомы в отношении и структуры, и функции. Эта дифференцированность, индивидуальная для каждой хромосомы, сравнительно легко выявляется в метафазе митоза. Бла­годаря этому в современной цитогенетике человека можно идентифицировать все хромосомы не по отдельным и слу­чайным признакам, а по существенным сторонам их струк­турно-функциональной организации. В практике цитогенетического анализа с этой целью .исследуют дифференци­альную конденсацию хромосом, хронологию репликации ДНК в хромосомах или дифференциальную окрашиваемость хромосом (А. Ф. Захаров, 1977).

Дифференциальность конденсации участ­ков хромосомы — одна из существенных ее характеристик, наиболее полно   выраженная в интерфазном ядре. В естественных условиях течения митоза хромосомные участки, резко различающиеся по степени конденсации в период интерфазы, в метафазе выглядят практически оди­наково. Лишь при специальных способах световой  или электронной микроскопии удается обнаружить неоднород­ную линейную структуру внешне гомогенной метафазной

хромосомы (Bahr, Larsen, 1974). Выравнивание циклов конденсации в разных участках хромосом можно затормо­зить искусственно. С этой целью особенно успешно при­меняется 5-бромдезоксиуридин (А. Ф. Захаров, 1973, 1977;

Dutrillaux, Lejeune, 1975). В присутствии этого вещества хромосомы вступают в метафазу неравномерно уплотнен­ными по своей длине. В результате тщательного изучения их морфологии показано, что каждая хромосома человека имеет строго постоянное и специфическое чередование нор­мально и слабо конденсированных участков и по этому признаку может быть идентифицирована.

Внутрихромосомная асинхронность реплика­ции ДНК является второй важнейшей чертой линейной неоднородности хромосомы, которая может быть выявлена в метафазе митоза. В течение полутора десятков лет эта черта хромосомной организации была доступна изучению методом радиоавтографии хромосом (под ред. А. А. Прокофьевой-Бельговской, 1969; А. Ф. Захаров, 1977; Giannelli, 1970, 1974). На основе этого метода были вскрыты прин­ципиальные закономерности репродукции хромосом чело­века, среди которых асинхронность репродукции разных участков хромосомы, постоянство и специфичность поряд­ка репродукции для данной хромосомы являются важней­шими. Однако идентификацию индивидуальных хромосом радиоавтография продвинула меньше, чем этого ожидали. На радиоавтографах дополнительно удается различить аутосомы 4 и 5, 13, 14 и 15, 17 и 18. В женских клетках одна из двух Х-хромосом отличается поздним началом и поздним окончанием синтеза ДНК. Несмотря на ограни­ченность данных, получаемых методом радиоавтографии, этот прием оказался исключительно полезным в улучше­нии идентификации аномалий указанных хромосом и по­мог в выделении нескольких новых самостоятельных синд­ромов в хромосомной патологии.

Существенный прогресс в изучении последовательности синтеза ДНК по длине каждой хромосомы человека в нор­ме, ее взаимосвязи с другими характеристиками хромосом­ной организации, ее состояния в случаях численных или структурных изменений в хромосомном наборе происхо­дит в настоящее время благодаря использованию в качест­ве предшественника синтеза ДНК аналога тимидина — 5-бромдезоксиуридина. Ослабленная способность к окрашиванию участков хромосомы, включивших этот предшест­венник, вооружила цитогенетиков точным методом изуче­ния хронологии хромосомной репродукции, возможности которого лимитируются лишь разрешающей способностью световой микроскопии. Репликационная структура всех хромосом человека выявляется с предельной ясностью, и она может быть описана в четких морфологических терми­нах.

Каждая хромосома состоит из участков, реплицирующихся в разное время. Имеется четкое чередование районов с ранней и поздней репликацией. В метафазной хромосоме

такие участки хорошо различимы с помощью светового ми­кроскопа. Специфичность репликационной структуры каж­дой хромосомы складывается из индивидуальности разме­ров, числа и взаимного расположения различающихся хро­мосомных районов (рис. 9).

В отличие от изложенных выше двух феноменов нерав­номерного окрашивания хромосом по длине, вызванного включением в ДНК 5-бромдезоксиуридина, под диф­ференциальной окрашиваемостью хромо­сом подразумевается способность к избирательному окра­шиванию по длине хромосомы, не модифицированной прижизненно какими-либо воз­действиями. Дифференциаль­ное окрашивание хромосом в этом случае обеспечивается сравнительно простыми температурно-солевыми воздей­ствиями на фиксированную хромосому.

Важно отметить, что при всем разнообразии подобных обработок хромосомных пре­паратов после фиксации и применяемых флуорохромных или нефлуоресцирующих красителей выявляемая ли­нейная неоднородность хро­мосомы всегда одна и та же. Ее рисунок меняется только в зависимости от степени уп­лотненности хромосомы: в бо­лее длинных, слабее сокра­щенных хромосомах стано­вится заметной дальнейшая неоднородность тех сегмен­тов, которые выглядели гомо­генно окрашенными в силь­но конденсированных хромо­сомах. Дифференциальное ок­рашивание может наблюдать­ся либо по всей длине хромо­сомы (Q-, G- и R-сегменты), либо в ее центромерном рай­оне (С-сегменты).

Наиболее ясное представле­ние о рисунке дифференци­ального окрашивания хромо­сом по всей длине можно получить при окраске препаратов по G-методике, используя краситель Гимзы (рис. 10). На таких препаратах хромосомы выглядят поперечно исчер­ченными, по-разному окрашенными сегментами («ban­ding»). Рисунок каждой пары хромосом является специ­фичным для нее. Размеры сегментов неодинаковые. В мел­ких хромосомах групп F и G рисунок образуется единич­ными сегментами, в крупных хромосомах их много. Общее количество окрашенных и неокрашенных сегментов в нор­мальном хромосомном наборе средней степени конденса­ции, в соответствии с Парижской номенклатурой, равно 322. В прометафазных хромосомах их число увеличива­ется до 1000 и более.

На Парижской конференции по номенклатуре в цитогенетике человека была разработана и в настоящее время вошла в практику цитогенетического анализа система обо­значения сегментов нормальных хромосом и хромосом, подвергшихся тем или иным структурным перестройкам (Paris Conference, 1971). На рис. 11 приведен пример этой системы для аутосомы 1.

Независимо от того, как решается вопрос о природе диф­ференциальной окрашиваемости хромосом, основанные на этом феномене цитологические карты имеют исключитель­ное значение для развития цитогенетики человека. С их помощью удается отнести генетические маркеры не просто к тому или иному хромосомному плечу, а к определенному району хромосомы. В медицинской цитогенетике стало реальным выявление происхождения аномальных хромо­сом вплоть до точного описания районов.

Второй вид дифференциального окрашивания хромосом вскрывает специфичность околоцентромерных районов в хромосомах человека. В разных хромосомах размеры С-сегментов разные, они особенно велики в аутосомах 1, 9 и 16. Однако идентифицировать по этой окраске сходные по величине и форме хромосомы не удается. В Y-хромосоме С-хроматин локализуется в дистальной части длинного плеча. В одной и той же хромосоме у разных индивидов его содержание может различаться.

Глава 2. Мейотические хромосомы.

Мейоз объединяет серию раз­личных процессов, в ходе которых первичные зародыше­вые клетки дифференцируются в зрелые половые клетки. В начале этой серии сперматогонии (оогонии) превраща­ются в первичные сперматоциты (ооциты). Центральным событием является первое мейотическое деление сперматоцита (ооцита), в ходе которого хромосомы испытывают особенно сложные специфические преобразования в пери­од профазы. Первая мейотическая профаза разделяется, как известно, на пять стадий: лептотену, зиготену, пахитену, диплотену и диакинез. В отличие от митоза, профаза которого в цитогенетическом анализе практически не ис­пользуется, профазные хромосомы первого мейотического деления представляют очень большой интерес для цитоге-нетики человека. Метафазные хромосомы первого мейоти­ческого деления, являющиеся бивалентами гомологичных хромосом, представляют собой менее дифференцированные структуры по сравнению с метафазными митотическими хромосомами. Хромосомы второго мейотического деления почти не используются в цитогенетике человека.

Протекание мейоза в мужском и женском организме значительно различается в нескольких отношениях: пери­од онтогенеза, продолжительность отдельных фаз, морфоло­гия митотических преобразований.

У мужчин мейотические деления начинаются в пери­од полового созревания и протекают непрерывно на про­тяжении всего последующего половозрелого состояния. Этот процесс в отличие от женского мейоза не носит ци­клического характера. В семенниках одновременно созрева­ет большое количество гамет, поэтому гонады половозрело­го мужчины могут служить источником мейотически деля­щихся клеток в  любой момент. На хромосомных препаратах одновременно удается видеть различные мейо­тические фигуры, от сперматогониальных метафаз до ме-тафаз второго мейотического деления. Продолжительность преобразований от сперматогоний до сперматозоидов зани­мает около 8—9 нед. Длительность отдельных стадий весь­ма различна, поэтому клетки разных стадий встречаются с неодинаковой частотой. Наиболее важные для цитогене-тического анализа стадии пахитены и диакинеза обычно представлены достаточным числом клеток.[3]

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.