скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Физиология спорта

Реферат: Физиология спорта

 

T

 

R

 

S

 

Q

 

“+“

 

“-“

 
10. ЭКГ, отведения, используемые для ее регистрации. Основные пока-затели ЭКГ и их связь с сердечным циклом. Изменение показателей ЭКГ при мышечной работе.

Р- возбуждение предсердий

QRS – возбуждение желудочков

T – расслабление желудочков

На ЭКГ анализируют величину зубцов в милливольтах и длину интервалов между ними в долях секунды, длите-льность сердечного цикла (R-R), ритмичность работы сердца. Сокращения считаются аритмичными, если соседние интервалы отличаются >, чем на 0,3 с.

Методы регистрации ЭКГ.

 Стандартное отведение:

1. Электроды между правой и левой рукой.

2. Между правой рукой, левой ногой.

3. Левой рукой, левой ногой.

Грудные отведения электродов распо-ложены непосредственно над сердцем.

  Нестандартные отведения – однополюсные грудные отведения и усиленные отведения от конечностей.

По показателям ЭКГ можно судить об автоматии, возбудимости, сократи-мости и проводимости сердечной мышцы. Особенности автоматии прояв-ляются в изменениях частоты и ритма зубцов, характер возбудимости и сократимости – в динамике ритма и высоте зубцов, а особенности прово-димости – в продолжительности интервалов.

Ритм работы сердца зависит от воз-раста, пола, массы тела, трениро-ванности (норма ЧСС 60-80 уд. в мин.) ЧСС <60 – брадикардия, >90 – тахикардия. Иногда аритмия связана с фазами дыхания (дыхательная арит-мия) – сердцебиения учащаются при вдохе и урежаются при выдохе.

ЧСС во время работы зависит от мощности физ.нагрузки. В диапазоне 130-180 уд./мин. Наблюдается прямо-пропорциональная зависимость между мощностью работы и ЧСС. ЧСС зависит от хар-ра физ. упражнений:

- при работе постоянной мощности ЧСС может поддерживаться почти стабильная.

- при работе переменной мощности ЧСС зависит от изменения мощности и колеблется примерно в диапазоне 130-180.

11. Систолический, резервный и остаточный объемы крови в желу-дочках. Минутный объем крови. Объемная и линейная скорость кровотока. Время полного кругово-рота крови. Изменение этих показа-телей с возрастом и под влиянием мышечной деятельности.

Систолический (ударный) объем – это кол-во крови, которое выталкивает сердце при одном сокращении, при этом в желудочке может еще остава-ться некоторое кол-во крови. УОК зависит от венозного притока и при работе он увеличивается. При работе увеличивается общий объем кровото-ка, СистОб. нарастает до макс. ве-личины, которое достигается при частоте сердцебиения 130 уд/мин. Увеличение СО обеспечивается растя-жением мышцы, повышенным объемом кровотока, что вызывает усиление сокращения миокарда. Макс. величина СО крови зависит от размеров серд-ца. У нетренированного человека в покое СО 60 мм, при работе 100 мм. У спортсмена СО в покое 80 мм и >, при работе до 200 мм и >. При одинаковой нагрузке сердце трениро-ванного человека обеспечивает боль-ший СО крови и имеет меньшую ЧСС. СО зависит от положений тела и при переводе из положения лежа в поло-жение стоя СО уменьшается приблиз. на 40% в результате затруднения ве-нозного притока к сердцу. При нату-живании кровоток грудн.полости уменьш-ся и СО уменьш. наполовину.

Резервный – мобилизуется при максимальном сокращении сердца.

Остаточный – остается при любых сокращениях сердца.

МОК или сердечный выброс – это кол-во крови, которое проходит через сердце за 1 мин. МОК–это ЧСС х СО. В состоянии покоя МОК 4,5-5 л/мин. Макс. значения МОК 15-35 лет. При работе МОК увелич. у нетренир. чел. 15-20 л/мин, у спортсменов до 30-35 л/мин. С увеличением мощности рабо-ты МОК возрастает прямо пропорц-но.

Объемной скоростью кровотока назы-вают кол-во крови, которое протека-ет за 1 мин через всю кровеносную систему, измер-ся в мм в мин. В покое 5800, легкая физ.работа 9500, средняя 17500, тяжелая 25000.

Линейная скорость кровотока – скор. Движения частиц крови вдоль сосу-дов, измер. в см в 1 с. Прямо про-порц-на объемн. V кровотока и об-ратно проп-на площади сечения кро-веносного русла. Больше в центре сосуда, меньше у его стенок, выше в аорте и крупных артериях, ниже в венах. Самая низкая V в капиллярах.

О средней линейной V кровотока мож-но судить по времени полного круго-оборота крови. В состоянии покоя оно=21-23с, при тяж. работе=8-10с.

  

12. Нервно-рефлекторная и гумора-льная регуляция деят-ти сердца. Сосудодвигательный центр. Влияние симпатических и парасимп-их нервов на тонус сосудов. Гуморальная регу-ляция сосудистого тонуса.

Главную роль в регуляции деятель-ности сердца играют нервные и гумо-ральные влияния. Нервная регуляция деятельности сердца осуществляется эфферентными ветвями блуждающего и симпатического нервов. Эфферентные волокна блуждающего нерва проводят импульсы, тормозящие деятельность сердца. Центры блуждающих нервов нах-ся в продолговатом мозге, вто-рые нейроны расположены непосредст-венно в нервных узлах сердца. Импульсы с нервных окончаний передаются на сердце посредством медиаторов. Медиатор – ацетилхолин.

Симпатические нервы усиливают рабо-ту сердца. Нейроны симп-их нервов нах-ся в верхних сегментах грудного отдела спинного мозга, отсюда воз-буждение передается в шейные и вер-хние грудные симпатические узлы и далее к сердцу. Усиливающие нервные волокна явл-ся трофическими, т.е. действующими на сердце путем повы-шения обмена в-в в миокарде. Медиатор – норадреналин.

Нервы, регулирующие тонус сосудов, назыв-ся сосудодвигательными и сос-тоят из сосудосуживающих и сосудо-расширяющих. Симпатические нервные волокна выходят в составе передних корешков спинного мозга, оказываю т суживающее действие на сосуды кожи, органов брюшной полости, почек, легких и мозговых, но расширяют сосуды сердца. Сосудорасширяющие влияния оказываются парасимпатичес-кими волокнами, которые выходят из спинного мозга в составе задних корешков.

Сосудодвигательный центр состоит из прессорного (сосудосуживающего) и депрессорного отделов. Главная роль в регуляции тонуса сосудов принад-лежит прессорному отделу. Высшие сосудодв-ые центры расположены в коре головного мозга и гипотала-мусе, низшие – в спинном мозге. Нервная регуляция тонуса сосудов осущ-ся и рефлекторным путем. На основе безусловных рефлексов (обо-ронительных, пищевых, половых) вырабатываются сосудистые условные реакции на слова, вид объектов, эмоции и др. Рефлексы на сосуды возникаю в коже и слизистых оболоч-ках (экстероцептивные зоны) и сер-дечно-сосудистой системе (интеро-цептивные зоны).

Гуморальная регуляция тонуса сосу-дов осущ-ся сосудосуживающими и сосудорасширяющими в-вами.

Сосудосуж. Гормоны мозгового слоя надпочечников - адреналин и норад-реналин, г-ы задней доли гипофиза – вазопрессин. Серотин – образ-ся в слизистой оболочке кишечника, неко-торых уч-ах гол.мозга и при распаде тромбоцитов. Ренин – образуется в почках. Оказывают общее действие на крупные кровеносные сосуды.

Сосудорасш. Медуллин, вырабатывае-мый мозговым слоем почек и простог-ландины – секрет предстательной железы. Брадикинин (подчелюстная и поджелудочная желез, легкие, кожа) – вызывает расслабление гладкой мускулатуры артериол и понижает кровяное давление. Ацетилхолин – образ-ся в окончаниях парасимп. нервов. Гистамин – нах-ся в стенках желудка, кишечника, коже и скелет-ных мышцах. Действуют местно.

13. Особенности строения и ф-ции дыхания (респираторная, нереспи-раторная). Механизм вдоха и выдоха. Внутриплевральное и легочное дав-ление. Сопротивление дыханию в покое и при физ.нагрузках.

Дыхание – важнейший процесс в жизни живых существ. Это потребление О2 и выделение СО2. Осуществляется в 5 этапов: внешнее дыхание, обмен га-зами в легких, перенос газов кровь-ю, обмен газами в тканях, тканевое дыхание.

Внешнее дыхание обеспечив-ся через трахею, бронхи, бронхиолы, альвеолы.

Мертвое пространство – объем 120-150 мл. Образовано воздухоносными путями (полости рта, носа, глотки, гортани, трахеи и бронхов), не уча-ствующими в газообмене воздухом.

Механизм вдоха. Наружные межребер-ные мышцы поднимают ребра, диафраг-ма уплощается. Внутри гр. полости давление падает ниже атмосферного и воздух заходит в легкие. Объем лег-ких возрастает на 250-300 мл. Механизм выдоха. При спокойном ды-хании выдох пассивный за счет тя-жести гр. клетки и расслабления диафрагмы. При глубоком выдохе работают внутренние межреберные мышцы, которые опускают ребра.

Герметически замкнутая плевральная полость (щель) образована висцера-льным (покрывает легкое) и парие-тальным (выстилает грудную клетку изнутри) листками плевры и защищена небольшим кол-вом жидкости. Давление в плевральной полости ниже атмосферного, которое еще больше снижается при вдохе, способствуя поступлению воздух в легкие. При попадании воздуха или жидкости в плевр.полость легкие спадаются за счет их эластической тяги, дыхание становится невозможным и развива-ются тяжелые осложнения – пневмо-гидроторакс.

Вентиляция легких обеспечивает об-новление состава альвеолярного газа. Количественным показателем вентиляции легких служит минутный объем дыхания (МОД), определяется как произведение дыхательного объе-ма на число дыханий в минуту. Лего-чная вентиляция обеспечивается ра-ботой дыхат.мышц. Эта работа связа-на с преодолением эластического сопротивления легких и сопротив-ления дыхательному потоку воздуха (неэластическое сопротивление).

При МОД = 6-8 л/мин на работу дыхательных мышц расходуется 5-10 мл/мин. При физ.нагрузках, когда МОД достигает 150-200 л/мин, для обеспечения работы дыхат-х мышц требуется около 1 л кислорода.



14. Дыхательные объемы емкости. Определение, величины. Показатели внешнего дыхания (частота дыхания, глубина дыхания, МОД, потребление кислорода). Изменение с возрастом и в процессе тренировки. Методы исследования.

Общая емкость легкий – 4-6 л – кол-во воздуха, находящегося в легких после макс. вдоха. Состоит из дыха-тельного объема, резервного объема вдоха и выдоха и остаточного объема.

Дыхательный объем – кол-во воздуха, проходящего через легкие при спо-койном вдохе (выдохе) = 400-500 мл.

Резервный объем вдоха (1,5-3 л) составляет воздух, который можно вдохнуть дополнительно после обыч-ного вдоха. Резервный объем выдоха (1-1,5 л) объем воздуха, который еще можно выдохнуть после обычного выдоха.

Остаточный объем (1-1,2 л) – кол-во воздуха, которое остается в легких после макс. выдоха и выходит только при пневмотараксе (прокол легких – спадение легких).

ЖЕЛ (жизн-ая емкость легких) – Сум-ма дых-го воздуха, резервных объе-мов вдоха и выдоха=3,5-5 л, у спо-ртсменов может достигать 6 л и >.

Частота дыхания – 10-14 дыхательных циклов в минуту.

МОД (минутный объем дыхания) – это кол-во литров воздуха за 1 мин. (6-8 л, т.к. в покое человек делает 10-14 дахат-ых циклов в минуту). В состав дых-го воздуха входит мерт-вое пространство – объем 120-150 мл. Образовано воздухоносными путя-ми (полости рта, носа, глотки, гор-тани, трахеи и бронхов), не участ-вующими в газообмене воздухом. МОД = глубина дыхания х частоту дыха-ния. У нетренированных достигается за счет ЧД, у спортсменов за счет ГД.

При мышечной работе дыхание значи-тельно увеличивается – растет глу-бина дыхания (до 2-3 л) и частота дыхания (до 40-60 вдохов в 1 мин). МОД может увеличиваться до 150-200 л в мин. Однако большое потребление кислорода дыхательными мышцами (до 1 л в мин) делает нецелесообразным предельное напряжение внешнего дыхания.

Дыхание у детей частое и поверхнос-тное. Дыхательный объем дошкольника в 3-5 раз <, чем у взрослого чело-века. Он постепенно увеличивается. Частота дыхания у детей повышена. Она постепенно снижается с возрас-том. При умственных и физ. нагруз-ках, эмоц. Вспышках, повышении тем-пературы ЧД чрезвычайно легко нара-стает. ЖЕЛ у дошкольников в 3-5 раз <, чем у взрослых, а младшем шко-льном возрасте в 2 раза <. МОД на протяжении дошкольного и младшего школьного возраста постепенно рас-тет. Этот показатель за счет высо-кой частоты дыхания у детей меньше отстает от взрослых величин.

У подростков (средний, старший шк. возраст) увелич-ся длительность дыхат-го цикла и скорость вдоха, продолжительнее становится выдох. Экономизируются дых-ые реакции на нагрузки. Возрастает дых-ый объем и снижается ЧД. Повышается глубина дыхания. В 12 лет ЧД 19 вдохов/мин, 14 лет – 16-20 вд/мин. МОД в 10 лет 4 л/мин, в 14 лет 5 л/мин. Дыхат-ые ф-ции затрудняются в период полово-го созревания. Задержка роста груд-ной клетки при значительном вытяги-вании тела затрудняет дыхание. Наб-людается неритмичность дыхания, не заверше процесс расширения воздухо-носных путей.

При старении органы дыхания претер-певают изменения. Они выражаются в понижении эластических св-в легоч-ной ткани, уменьшении силы дыхате-льных мышц, снижается вентиляция легких, нарушается газообмен, появ-ляется одышка, особенно при физ. нагрузках. В 60 лет по сравнению с 25, общая емкость легких снижена примерно на 1000 мл, ЖЕЛ – на 1500 мл, остаточный объем увеличен на 15-20%. Но даже в глубокой старости ф-ции дыхат.системы обеспечивают потребности организма в кислороде.

15. Газообмен в легких. Механизм и факторы его определяющие (разность концентраций газов, диффузионная способность легких и др.). Физиоло-гическое значение «кривой диссо-циации оксигемоглобина». Обмен газов между кровью и тканями. Коэффициент утилизации кислорода.

Основной механизм газообмена в лег-ких – это диффузия в результате разницы парциальных давлений О2 и СО2. Парциальное давление – это давление одного газа, который нах-ся в смеси с другим.

Вдох – 79,03% азот; 20,94% - кисло-род, 0,03 - СО2.

Выдох – 79,7 азот; 4% - СО2; 16,3 – кислород.

О2 и СО2 диффузируют только в раст-воренном состоянии.

Диффузионная способность легких для кислорода очень велика. Это обус-ловлено огромным (сотни миллионов) альвеол и большой их газообменной поверхностью (около 100 м2), а так же малой толщиной альвеолярно-капи-ллярной мембраны.

Диффузионная способность легких у человека примерно = 25 мл О2 в 1 мин в расчете на 1 мм рт.ст. градиента парциальных давлений кислорода.

Диффузия СО2 из венозной крови в альвеолы происходит достаточно легко, т.к. растворимость СО2 в жидких средах в 20-25 раз больше, чем у кислорода.

Дыхат.ф-ция крови – доставка к тка-ням необходимого им кол-ва О2. О2 в крови нах-ся в 2-х состояниях: растворенный в плазме (0,3 об.%) и связанный с гемоглобином (20об.%) – оксигемоглобин. СО2 тоже нах-ся в крови в 2-х состояниях: растворен-ный в плазме (5% всего кол-ва)и химически связанный с др. в-вами (95%) – угольная кислота (Н2СО3), соли угольной кислоты (NaHCO3) и в связи с гемоглобином (HbHCO3).

Отдавший кислород гемоглобин счи-тают восстановленным или дезокси-гемоглобином. Молекула гемоглобина содержит 4 частицы гемма и может связать 4 молекулы О2. Кол-во О2, связанного гемоглобином в 100 мл крови, носит название кислородной емкости крови и составляет около 20 мл О2.

Кривая диссоциации оксигемоглобина – кривая зависимости процентного насыщения гемоглобина кислородом от величины парциального напряжения. Анализ хода этой кривой сверху вниз показывает, что с уменьшением рО2 в крови происходит диссоциация окси-гемоглобина, т.е. процентное содер-жание оксигемоглобина уменьшается, а восстановление его растет.

Об%О2

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.