скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Шпора 2 по мат анализу


Пример:

Рекомендации:

В интегралах с подынтегральным выражением вида:

    (Pn –многочлен степени n )

Pn принимается за u

В интегралах с подынтегральным выражением вида:

 за u ®

Интегрирование с подстановкой выражений вида  после  двукратного интегрирования по частям приводится к линейному уравнению относительно вычисляемого интеграла.

20.Основные типы интегралов, берущихся по частям.+++21.Интегрирование рациональный алгебраических функций.

(см. дополн шпору)

22.Метод неопределенных коэффициентов.

1. Разложим знаменатель на множители:

2. Правильная дробь разлагается в сумму простейших и каждому множителю вида соотв. сумма из n простейших дробей вида:

 с неопределенным коэф. A1n 

Каждому множителю вида соот. сумма из m простейших дробей вида:

с неопределенным коэф.B1 C1…

3. Неизвестный коэф. находится методом неопределенных коэф., основанном на: определении, что 2 многочлена тождественно совпадают, если у них равные коэффициенты при одинаковых степенях.

4. Приравнивая коэф. при одинаковых степенях в левой и правой частях, получим систему линейных уравнений относительно неизвестного уравнения.

23.Понятие интегральной суммы. Геометрический смысл.

Определение. Пусть непрерывная функция от одной переменной задана на отрезке [a, b].

1) Тогда разбиением отрезка [a, b] называется конечное множество точек х0 , х1 ... хn , где

а = х0 < х1< х2 < .... < хn-1 < хn = b

2) обозначим через D хi = хi – хi-1, i=1, 2, …, n

Диаметром разбиения называется

 D =  - длина максимального из отрезков разбиения.

На каждом отрезке , i = 1, 2, …, n, произвольно выберем   и составим сумму

 (13)

которая называется интегральной суммой Римана функции f(х), соответствующей

данному разбиению отрезка [а, b]  и выбору точек .

Теперь выясним геометрический смысл интегральных сумм Римана.

Пусть f (х) непрерывная на отрезке [а, b] функция, причем f (х)0, .

Произведение f()Dхi равно заштрихованной площади прямоугольника с основанием D х= хi - хi-1  и высотой f ().

Тогда сумма

представляет собой сумму площадей n прямоугольников, с основаниями D хi и высотами f (), i = 1, 2…, n. Здесь х0=а, хn = b.

Если при стремлении к нулю диаметра разбиения отрезка [а, b] существует предел (14), то определенный интеграл представляет собой площадь криволинейный трапеции.

24.Свойства определенного интеграла.

Df. Промежуток с гранич. т. A и B ориентированным, если указано направление перехода от т. A к т. B.

1. Пусть сущ. определенный интеграл  сущ. определенный интеграл и справедливо равенство

2.

Док-во:

3. Свойство линейности определенного интеграла:

                                              1. Пустьф-ииинтегрируемы на ***

                                              2. Пусть , то для любой произвольной постоянной   - справедлива формула

4. Аддитивность определенного интеграла:

Пусть ф-ия  интегрируема на большем их трех помежутков , тогда она интегрируема на обоих меньших промежутках и справедлива формула:

Свойство монотонности.

1. Пусть ф-ия  неотрицательна на  и интегрируема на нем,

Док-во: В силу н-ва для ф-ий любая интегрируема ф-ия неотрицательна Þ любая последовательность интегрируемых сумм будет иметь неотрицательный предел Þ интеграл будет неотрицательным.

2. Пусть ф-ия  на , искл. конечн. точек, и интегрируема на , тогда

Док-во:  Из интегрируемости следует, что предел не зависит от выбора разбиения на . Достаточно строить инт. разбиения так, чтобы точки, в которых ф-ия равна нулю, являлись точками разбиения. А следовательно в силу аддитивности интеграл по всему прмежутку равен сумме интегралов по частичным промежуткам, т.к ****

Df Две ф-ии , заданные на , значения которых различны на  лишь в конечном ч. точек называются эквивалентными на этом отрезке.

3. Инт. от эквивалентных ф-ий совп.

Пусть эквивалентны и интегрируемы на , тогда  (они не совпадают а интегралы совпадают).

Д-во:

 на  лишь в конеч. ч. точек отр. , следовательно по 2му  

4. Пусть  на , кроме конечного ч. точек,  инт. на , , то

5. Пусть  инт-ма на  Þ модуль ф-ии тоже интегрируем на  и справедливо неравенство:

6. Пусть  интегрируема на , , то существует М, такая что

25.Интеграл с переменным верхним пределом.

Теорема о его непрерывности.

Теорма: Если функция f(x) интегрируема на отрезке [a,b], то функция

непрерывна на этом отрезке.

Доказательство: Дадим числу х приращение ∆х так, чтобы х+∆хÎ[a,b]. Для наглядности изобразим на числовой оси один из возможных вариантов расположения точек:


             a            x0                     x            х+∆х      b

Получим:

По  теореме (Если функция y=f(x) интегрируема на отрезке, то интегрируема и абсолютная величина |f(x)|, причем

…(на этом теорема закончилась, но неравенство относится к ней.) и следствию из теоремы (Если на отрезке [a,b] функция f(x) интегрируема и удовлетворяет неравенству m£f(x)£M. То выполняются неравенства:

(на этом следствие из теоремы закончилось)

получаем:

Отсюда следует, что при ∆х→0 будет F→0. Это доказывает непрерывность функции F(x). Отметим, что для подынтегральной функции f(x) точка х может быть точкой разрыва.

26.Формула Ньютона-Лейбница.

Пусть F(x) -произвольная первообразная для функции f(x), заданной на промежутке [a,b]. Так как две первообразные одной и той же функции отличаются на постоянное слагаемое, то верно равенство (1):

( в качестве числа х0 взято число а).

В этом тождестве положим х=а и получим ,

Откуда С = -F(a). Формула (1) примет вид:

Заменяя здесь х на b, приходим к формуле Ньютона-Лейбница:

Иногда ее правую часть записывают короче с помощью двойной подстановки:

27.Замена переменных в определенном интеграле.

Теорема: при замене переменной х на t по формуле x=φ(t) равенство (1)

Справедливо при условиях:

1. φ(α) = а, φ(β) = b,

2. φ'(t) непрерывна на отрезке [α,β],

3 f(x) непрерывна на отрезке [a,b], а f[φ(t)] определена  непрерывна на отрезке [α,β].

Доказательство: при наших предположениях левая и правая части равенства (1) существуют и существуют первообразные подынтегральные функции. Пусть ∫f(x)dx = F(x)+C. Тогда, как легко проверить дифференцированием обеих частей, справедливо равенство ∫f[φ(t)]φ'(t)dt = F[φ(t)]+C правая часть дифференцируется как сложная функция). Применяем формулу Ньютона-Лейбница

Получаем

(по условию 1)

правые части этих двух равенств оказываются одинаковыми, следовательно, можно приравнять левые части. Приравнивая их, приходим к равенству (1). Ч.т.д.

28.Формула интегрирования по частям определенного интеграла.

Пусть u и v - непрерывно дифференцируемые функции. Проинтегрируем равенство d(uv)=udv+vdu в пределах от a до b.


В левой части применим формулу Ньютона-Лейбница:

Получим:


29.Приложение определенного интеграла. Площадь криволинейной трапеции.

Площадь s криволинейной трапеции, ограниченной кривой у=Ах2+Вх+С, проходящей через точки М1 (-h; y1), M2 (0, y2), M3 (h, y3) (рис. 2) выражается формулой

(2)

Доказательство. Подставляя в уравнение у=Ах2+Вх+С координаты точек М1, М2, М3, получаем у1=Аh2-Вh+С; у2=С; у3=Аh2+Вh+С, откуда следует, что

2Аh2+2С=у1+у3; С=у2 (3)

Учитывая соотношение (3), имеем

Рассмотрим снова криволинейную трапецию, ограниченную произвольной кривой y=f(x). Разобьем отрезок [a, b] на 2p равных отрезков точками a=x0<x1<x2<...<x2k<x2k+1<x2k+2<...<x2n-1<x2n=b, а кривую y=f(x) с помощью прямых x=xk на 2n соответствующих частей точками М0 , М1 , М2 , ..., М2k , М2k+1 , М2k+2, ..., М2n-2 , М2n-1 , М2n (рис. 3).

Через каждую тройку точек

М0 М1 М2 , ..., М2k М2k+1 М2k+2, ..., М2n-2 М2n-1 М2n

проведем кривую вида у=Ах2+Вх+С (см. лемму 1.1). В результате получим n криволинейных трапеций, ограниченных сверху параболами или прямыми (эти трапеции заштрихованы на рис. 3). Так как площадь частичной криволинейной трапеции, соответствующей отрезку [x2k, x2k+2], приближенно равна площади соответствующей “параболической” трапеции, то по формуле (2) имеем [в данном случае h=(b-a)/(2n)]

где yk=f(xk), k=0, 1, 2, ...,2n. Складывая почленно эти приближенные равенства, получаем приближенную формулу

или в развернутом виде

Эта формула называется формулой парабол или формулой Симпсона.

30.Приближенное вычисление определенного интеграла. Формула трапеций.

Пусть требуется вычислить интеграл , где f(x) - непрерывная функция. Для простоты рассуждений ограничимся случаем, когда f(x)³ 0. Разобьем отрезок [a, b] на n отрезков точками a=x0<x1<x2<...<xk-1<xk<...<xn=b и с помощью прямых х=хk построим n прямолинейных трапеций (эти трапеции заштрихованы на рис. 1). Сумма площадей трапеций приближенно равна площади криволинейной трапеции, т.е.

Где f(xk-1) и f(xk) - соответственно основания трапеций; xk - xk-1 = (b-a)/n - их высоты.

Таким образом, получена приближенная формула

которая и называется формулой трапеций. Эта формула тем точнее, чем больше n.

31.Несобственные интегралы с бесконечными пределами. +++32.Несобственные интегралы второго ряда.

Несобственными интегралами называются: 1) интегралы с бесконечными пределами; 2) интегралы от неограниченных функций.
  Несобственный интеграл от функции f(x) в пределах от a до +Ґ определяется равенством

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.