скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Множина комплексних чисел

Докажем, что множество комплексных чисел в качестве своего подмножества содержит все дейст­вительные числа. Рассмотрим упорядоченные пары вида (a, 0). Каждой паре (a, 0) поставим в соот­ветствие действительное число а, в результате полу­чим взаимно однозначное соответствие между мно­жеством рассматриваемых упорядоченных пар и множеством всех действительных чисел. Применяя к указанным упорядоченным парам формулы (1) и (2), находим;

(а, 0) + (b, 0) = (а + b, 0);               (а, 0) (b, 0)  = (ab, 0).

Эти равенства означают, что упорядоченные пары вида (а, 0) складываются и умножаются так же, как действительные числа. Следовательно, множест­во указанных упорядоченных пар действительных чисел, рассматриваемое как подмножество множест­ва комплексных чисел, по своим алгебраическим свойствам не отличается от множества действитель­ных чисел. Это позволяет положить

                                                          (а, 0) = а,                                                     (5)

т. е. не различать упорядоченную пару (a, 0) дейст­вительных чисел и действительное число a. В част­ности, нуль (0, 0) и единица (1, 0) множества комп­лексных чисел оказываются обычными действитель­ными числами 0 и 1.

Покажем, что среди комплексных чисел содер­жится корень уравнения х+ 1 = 0. Корнем уравне­ния х+ 1 = 0 является такое число, квадрат кото­рого равен действительному числу —1. Это число определяется упорядоченной парой (0, 1). В самом деле, применив формулу (2), получим

(0, 1) (0, 1) = (-1, 0) = -1.

Обозначим эту упорядоченную пару через i, т. е. i = (0, 1), тогда

                                                  i = - 1, i = ,                                                 (6)

число ί называют мнимой единицей.

Найдем произведение действительного числа b на упорядоченную пару (0, 1) = ί — мнимую еди­ницу:

                      bi = (b, 0)(0, 1) = (0, b),            ib = (0, 1)(b, 0) = (0, b).                (7)

Если (а, b) - произвольная упорядоченная пара, то из очевидного равенства (а, b) = (a, 0) + (0, b) и формул (5), (7) получаем

                                                     (a, b) = a + bi.                                                   (8)

Следовательно, комплексное число α = (a, b) мо­жет быть записано в виде a + bi = a + ib, где a и b — действительные числа, ί — мнимая единица, определяемая соотношением (6). Выражение a + bi называют алгебраической формой комплексного числа. Число a называют действительной, число b — мнимой частью комплексного числа a + bi.  Обозначая комплексное число a + bi одной буквой α, пишут:

a = Reα, b = Imα,

где Re — начальные буквы латинского слова realis (действительный), Im - начальные буквы латинского слова imaginarius (воображаемый). Кроме указанных обозначений, употребляются также и такие: a = R(α), b = I(α), где (a, b) = a + bi. Числа вида bi называют чисто мнимыми числами или просто мнимыми.

85

Комплексное число a + bi считают равным нулю тогда и только тогда, когда а = 0, b = 0:

   .                                             (9)

Два комплексных числа a + bi  и c + di считают равными тогда и только тогда, когда равны между собой соответственно их действительные и мнимые части, т. е. a  = с, b = d:

.                                     (10)

Комплексное число a - bi называют сопряжен­ным комплексному числу a + bi. Обозначим число a - bi буквой  = a + bi. Числу  будет сопряжено число a – (-bi) = a + bi = α. Вследствие этого числа α = a + bi и  = a - bi называют комп­лексно сопряженными числами. Действительные числа и только они сопряжены сами себе. В самом деле, если α = a, где a - действительное число, то из формул (5) и (8) имеем: α = a + 0i = a,  = a – 0i = a,  т. е. α = .

Например:      комплексному числу 3 + 5i сопряжённым будет 3 – 5i ;

                        комплексному числу 4 - 7i сопряжённым будет 4 + 7i .

Действия над комплексными числами, заданными в алгебраической форме

         Рассмотрим правила, по которым производятся арифметические действия над комплекс­ными числами.

Если даны два комплексных числа α = a + bi  и β = c + di, то

α + β = (a + bi) + (c + di) = (a + c) + (b + d)i,

α – β = (a + bi) – (c + di) = (a – c) + (b – d)i .                     (11)

Это следует из определения действий сложения и вычитания двух упорядоченных пар действительных чисел (см. формулы (1) и (3)). Мы получили правила сложения и вычитания комплексных чисел: чтобы сложить два комплексных числа, надо отдельно сложить их действительные части и соответственно мни­мые части; чтобы из одного комплексного числа вычесть другое, необходимо вычесть соответственно их действительные и мнимые части.

Число – α = – a – bi  называют противополож­ным числу α = a + bi . Сумма двух этих чисел равна нулю: - α + α = (- a - bi) + (a + bi) = (-a + a) + (-b + b)i = 0.

Для получения правила умножения комплексных чисел воспользуемся формулой (6), т. е. тем, что i2 = -1. Учитывая это соотношение, находим (a + bi)( c + di) = ac + adi + bci + bdi2 = ac + (ad + bc)i – bd, т.е.

(a + bi)( c + di) = (ac - bd) + (ad + bc)i .                              (12)

Эта формула соответствует формуле (2), которой определялось умножение упорядоченных пар дей­ствительных чисел.

Отметим, что сумма и произведение двух комп­лексно сопряженных чисел являются действительными числами. В самом деле, если α = a + bi,  = a – bi, то α = (a + bi)( a - bi) = a2 – i2b2 = a2 + b2 , α +  = ( a + bi) + (a - bi) = (a + a) + (b - b)i = 2a, т.е.

α +  = 2a, α = a2 + b2.                                            (13)

При делении двух комплексных чисел в алгеб­раической форме следует ожидать, что частное вы­ражается также числом того же вида, т. е. α/β = u + vi, где u, v  R. Выведем правило деления комплексных чисел. Пусть даны числа α = a + bi, β = c + di, причем β ≠ 0, т. е. c2 + d2 ≠ 0. Послед­нее неравенство означает, что c и d одновременно в нуль не обращаются (исключается случай, когда с = 0, d = 0). Применяя формулу (12) и вто­рое из равенств (13), находим:

.

 Следовательно, частное двух комплексных чисел определяется формулой:

,                                        (14)

соответствующей формуле (4).

С помощью полученной формулы для числа  β = с + di можно найти обратное ему число β-1 = 1/β. Полагая в формуле (14) а = 1, b = 0,  получаем

.

Эта формула определяет число, обратное данному комплексному числу, отличному от нуля; это число также является комплексным.

Например:     (3 + 7i) + (4 + 2i) = 7 + 9i;

                       (6 + 5i) – (3 + 8i) = 3 – 3i;

                       (5 – 4i)(8 – 9i) = 4 – 77i;

                       .

Свойства действий

над комплексными числами

Для любых комплексных чисел α = a + bi, β = с + di, γ = e + fi выполняются следую­щие свойства действий сложения и умножения:

1) α + β = β + α – переместительное (коммутатив­ное) свойство сложения;

2) (α + β) + γ = α + (β + γ) – сочетательное (ассоциативное) свойство сложения;

3) αβ = βα – переместительное (комму­тативное) свойство умножения;

4) (αβ)γ = α(βγ) – сочетательное (ассоциативное) свойство умножения;

5) (α + β)γ = αγ + βγ – распределительное (дистри­бутивное) свойство умножения относительно сло­жения.

Докажем, например, первое и третье из этих свойств. По определению сложения получаем

α + β = (a + bi) + (c + di) = (a + c) + (b + d)i,

β + α = (c + di) + (a + bi) = (c + a) + (d + b)i = (a + c) + (b + d)i = α + β,

так как с + a = a + с, d + b = b + d, т. е. для любых действительных чисел выполняется переместительное (коммутативное) свойство сложения. Далее,

αβ = (a + bi)(c + di) = aс + adi + bci + bdi2 = (ac - bd) + (ad + bc)i,

βα = (c + di) (a + bi) = сa + cbi + dai + dbi2 = (ca - db) + (cb + da)i = (ac - bd) + (ad + bc)i = αβ,

поскольку для любых действительных чисел ac = ca, bd = db, т. е. выполняется перемести­тельное (коммутативное) свойство умножения.

Остальные свойства доказываются аналогично, с учетом соответствующих свойств операций над дей­ствительными числами.

Таким образом, операции над комплексными числами подчиняются тем же законам, что и опера­ции над действительными числами.

Возведение в степень комплексного числа.

Извлечение корня из комплексного числа

При возведении в степень комплексного числа пользуются формулой бинома Ньютона:

.

С помощью формулы бинома Ньютона получаем

.

В правой части этого равенства заменяют сте­пени мнимой единицы i их значениями и приводят подобные члены. Рассмотрим, как выражаются эти степени. Учитывая формулу i2 = - 1 , получаем i3 = i2 ∙ i = -1 ∙ i = - i,  i4 = i3i = -ii = -i2 = 1,  i5 = i4 ∙ i = i,  i6 = i5 ∙ i = i2 = -1,  i7 = i6 ∙ i = -ii8 = i7i = - i2 = 1 и т. д. В общем виде полученный результат можно записать так:

i4k = 1,  i4k+1 = i, i4k+2 = -1,  i4k+3 = - i (k = 0, 1, 2, …).

Например:   (3 + 4i)2 = 32 + 2 ∙ 3 ∙ 4i + (4i)2 = 9 + 24i + 16i2 = 9 + 24i – 16 = -7 + 24i;

                     (1 + i)3 = 1 + 3i + 3i2 + i3 = 1 + 3i – 3 – i = - 2 + 2i.

Переходим к извлечению квадратного корни из комплексного числа a + bi. Квадратным корнем из комплексного числа называют такое комплексное число, квадрат которого равен данному комплексно­му числу. Обозначим это комплексное число через u + vi, т. е.

.

Последнее равенство перепишем в следующем виде:

u2 + 2uvi + v2i2 = a + bi,               u2 – v2 + 2uvi = a + bi.

Учитывая определение равенства комплексных чисел (см. (10)),  получаем

u2 – v2 = a,              2uv = b.                                      (15)

Возведем в квадрат обе части каждого из этих равенств, сложим их, преобразуем полученную левую часть и извлечем квадратный корень:

(u2 – v2)2 + 4u2v2 = a2 + b2,       (u2 + v2)2 = a2 + b2,      u2 + v2 = .

Это уравнение и первое из уравнений (15) дают возможность определить u2 и v2 :

          .                      (16)

Из первого уравнения находим два значения u, отличающиеся друг от друга только знаком, второе уравнение дает два значения v. Все эти значения будут действительными, поскольку при любых a и b

      .

Знаки u и v следует выбирать так, чтобы выполнялось второе из равенств (15). Это дает две возможные комбинации значений u и v, т. е. два числа u1 + v1i, u2 + v2i, отличающиеся знаком.

Следовательно, извлечение квадратного корня из комплексного числа всегда возможно и дает два значения, отличающиеся друг от друга только знаком.

Например: пусть требуется извлечь квадратный корень из комплексного числа 3 — 4i, т. е. найти комплексное число u + vi такое, что (u + vi)2 = 3 – 4i. В данном случае a = 3, b = -4, поэтому уравнения (16) принимают вид

,      .

Второе из равенств (15) запишется так: 2uv = - 4, uv =-2; это означает, что соответствующие зна­чения u и v имеют разные знаки. Так как u2 = 4, v2 = 1, то с учетом равенства uv = -2 находим, что u1 = 2, v1 = -1, u2 = -2, v2 = 1, т.е. 2 – i и     -2 + i – значения квадратного корня из комп­лексного числа 3 – 4i.

Геометрическое изображение комплексного числа

(a,b)

 

(a,b)

 

Рис. 1

 

0

 

x

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.