скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Дзета-функция Римана

Итак, мы получили функциональное уравнение дзета-функции Римана

                                                                     (7),

которое само по себе может служить средством изучения этой функции, так как вполне характеризует её, в том смысле, что любая другая функция , удовлетворяющая равенству (7), а также ещё некоторым естественным условиям, тождественна с .

Пока, правда, как следует из рассуждений, мы доказали формулу (7) для . Однако правая часть этого равенства является аналитической функцией s и при . Это показывает, что дзета-функция может быть аналитически продолжена на всю комплексную плоскость, причём не имеет на ней никаких особенностей, кроме упоминавшегося полюса при .

Чтобы доказательство было строгим, мы должны ещё обосновать почленное интегрирование. Поскольку ряд (6) сходится почти всюду и его частичные суммы остаются ограниченными, почленное интегрирование на любом конечном отрезке допустимо. Ввиду   для любого , остаётся доказать, что   при . Но интегрируя внутренний интеграл по частям   имеем

. Отсюда без труда получается наше утверждение.

Функциональное уравнение дзета-функции (7) может быть записано многими способами. Например, заменим s на 1-s, получаем равносильное равенство

                                                                        (8). Из него можно получить два небольших следствия.

Подставим в (8) вместо s число 2m, где m – натуральное число. Имеем . По формуле (4) первой главы  , а , поэтому  и произведя в правой части все сокращения, учитывая, что , получим .

Покажем ещё, что . Для этого прологарифмируем равенство (8):    и результат продифференцируем  . В окрестности точки s=1 ,  , , где С – постоянная Эйлера, а k – произвольная постоянная. Следовательно, устремляя s к единице, получим , то есть . Опять из формулы (4) главы 1 при k=0 , значит, действительно, .

Глава 3.

Как уже было сказано, дзета-функция Римана широко применяется в математическом анализе. Однако наиболее полно важность её выявляется в теории чисел, где она оказывает неоценимую помощь в изучении распределения простых чисел в натуральном ряду. К сожалению, рассказ о серьезных и нетривиальных применениях дзета-функции Римана выходит за рамки этой работы. Но чтобы хотя бы немного представить мощь этой функции, докажем с её помощью несколько интересных утверждений.

Например, известно, что простых чисел бесконечно много. Самое знаменитое элементарное доказательство принадлежит Евклиду. Оно состоит в следующем. Предположим, что существует конечное число простых чисел, обозначим их p1, p2, … , pn. Рассмотрим число p1p2…pn+1, оно не делится ни на одно из простых и не совпадает ни с одним из них, то есть является простым числом, отличным от вышеуказанных, что противоречит предположению. Значит, количество простых чисел не может быть конечным.

Другое доказательство этого факта, использующее дзета-функцию, было дано Эйлером. Рассмотрим данное в первой главе равенство (5) при s=1, получим , отсюда  и ввиду расходимости гармонического ряда, имеем при  

                                                                                          (1). Если бы количество простых чисел было конечным, то и это произведение имело конечное значение. Однако, полученный результат свидетельствует об обратном. Доказательство завершено.

Теперь перепишем (1) в виде . Опираясь на теорему о сходимости бесконечного произведения, из расходимости предыдущего делаем вывод, что ряд  расходится. Это предложение даёт некоторую характеристику роста простых чисел. Подчеркнём, что оно гораздо сильнее утверждения о расходимости гармонического ряда, так как здесь речь идёт лишь о части его членов, тем более что в натуральном ряде имеются сколь угодно длинные промежутки без простых чисел, например: , , … , .

Несмотря на свою простоту приведённые выше предложения важны в концептуальном плане, так как они начинают череду исследований всё более и более глубоких свойств ряда простых чисел, которая продолжается по сей день. Первоначально, основной целью изучения дзета-функции как раз и было исследование функции , то есть количества простых чисел не превосходящих x. В качестве примера формулы, связывающей  и , мы сейчас получим равенство

                                                                                      (2).

Сначала воспользуемся разложением дзета-функции в произведение: . Из логарифмического ряда , учитывая, что , приходим к ряду  . Значит, .

Теперь вычислим интеграл в правой части (2). Так как при  , то . Во внутреннем интеграле положим , тогда  и , отсюда .В промежутке интегрирования , поэтому верно разложение  и  . Получаем  . Теперь   . Если сравнить полученное значение интеграла с рядом для , то увидим, что они тождественны и равенство (2) доказано.

Используем формулу (2) для доказательства одной очень серьёзной и важной теоремы, а именно получим асимптотический закон распределения простых чисел, то есть покажем, что .

В качестве исторической справки отмечу, что великий немецкий математик Карл Фридрих Гаусс эмпирически установил эту закономерность ещё в пятнадцатилетнем возрасте, когда ему подарили сборник математических таблиц, содержащий таблицу простых чисел и таблицу натуральных логарифмов.

Для доказательства возьмём формулу (2) и попытаемся разрешить это уравнение относительно , то есть обратить интеграл. Сделаем это с помощью формулы обращения Меллина следующим образом. Пусть  . Тогда

                                                                                   (3). Этот интеграл имеет нужную форму, а  не повлияет на асимптотику . Действительно, так как , интеграл для  сходится равномерно в полуплоскости , что легко обнаруживается сравнением с интегралом . Следовательно,  регулярна и ограничена в полуплоскости . То же самое справедливо и относительно , так как  .

Мы могли бы уже применить формулу Меллина, но тогда было бы весьма затруднительно выполнить интегрирование. Поэтому прежде преобразуем равенство (3) следующим образом. Дифференцируя по s, получаем . Обозначим левую часть через  и положим , , (,  и  полагаем равными нулю при ). Тогда, интегрируя по частям, находим  при , или .

Но  непрерывна и имеет ограниченную вариацию на любом конечном интервале, а так как , то  () и  (). Следовательно,  абсолютно интегрируема на  при . Поэтому  при , или  при . Интеграл в правой части абсолютно сходится, так как  ограниченна при , вне некоторой окрестности точки . В окрестности   и можно положить , где  ограниченна при ,  и имеет логарифмический порядок при . Далее,  . Первый член равен сумме вычетов в особых точках, расположенных слева от прямой , то есть . Во втором члене можно положить , так как  имеет при  лишь логарифмическую особенность. Следовательно, . Последний интеграл стремится к нулю при . Значит,

                                                                                                            (4).

Чтобы перейти обратно к , используем следующую лемму.

Пусть  положительна и не убывает и пусть при  . Тогда .

Действительно, если  - данное положительное число, то   (). Отсюда получаем для любого   . Но так как  не убывает, то . Следовательно, . Полагая, например, , получаем .

Аналогично, рассматривая , получаем , значит , что и требовалось доказать.

Применяя лемму, из (4) имеем, что , , поэтому  и теорема доказана.

Для ознакомления с более глубокими результатами теории дзета-функции Римана могу отослать заинтересованного читателя к прилагаемому списку использованной литературы.

Список литературы

Титчмарш Е.К. Теория дзета-функции Римана. Череповец, 2000 г.

Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления, том II. М.,1970 г.

Привалов И.И. Введение в теорию функций комплексного переменного. М.,1999 г.

Айерленд К., Роузен М. Классическое введение в современную теорию чисел. М.,1987 г.

Шафаревич З.А. Теория чисел. М.,1986г.


Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.