скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Дзета-функция Римана

Докажем тождественность ряда (1) и произведения (4). Вспомнив формулу суммы геометрической прогрессии, получаем равенство

 Если перемножить конечное число таких рядов, отвечающих всем простым числам, не превосходящим заданного натурального числа N, то получившееся частичное произведение окажется равным   , где    символ    *    означает,     что    суммирование распространяется не на все натуральные числа, а лишь на те из них (не считая единицы), которые в своём разложении содержат только простые числа меньшие N. Так как первые N натуральных чисел этим свойством обладают, то

                                                                       (5).

Сумма  содержит не все числа, большие N+1, поэтому, очевидно, . Из (5) получаем

                                                                  (6).

Ввиду сходимости ряда (1), выражение справа, представляющее его остаток после N-го члена, стремится к нулю при N стремящимся к бесконечности, а  есть произведение (4). Значит из неравенства при  , что и требовалось доказать.

Формула (4) важна потому, что она связывает натуральный ряд, представленный множеством значений аргумента дзета-функции, со множеством простых чисел. Ещё один шаг в этом направлении мы сделаем, оценив , а именно показав, что , где  остаётся ограниченным при .

Из (4) следует, что , где N, а  при . Возьмём логарифм от обеих частей равенства, тогда  . Натуральные логарифмы под знаком суммы разлагаются в ряд:  . Подставив полученные разложения в равенство и устремив N к бесконечности, имеем . Остаётся доказать ограниченность последнего слагаемого. Ясно, что . Последнее равенство справедливо,  так как  . Далее, очевидно, , что и завершает доказательство.

На этом закончим изложение свойств дзета-функции Римана для действительного аргумента, так как наибольший теоретический и прикладной интерес представляет  случай изложенный во второй главе.

Глава 2.

Все результаты первой главы, касающиеся дзета-функции Римана, были получены в предположении, что её аргумент s – действительное число. Однако, самые выдающиеся исследования и многочисленные важные приложения стали возможны лишь после включения в область определения функции комплексных чисел. Впервые рассмотрел дзета-функцию как функцию мнимого аргумента немецкий математик Бернгард Риман, глубоко изучивший её свойства и широко применявший её в теории чисел. В честь него функция получила своё название.

Для комплексной дзета-функции остаётся в силе определение, данное в главе 1, с тем лишь изменением, что теперь там будет C. Возникает необходимость найти новую область определения. С этой целью докажем следующее утверждение: в полуплоскости  ( действительная часть числа x) ряд

                                                                                                                (1) сходится абсолютно.

Пусть . Подсчитаем абсолютные величины членов ряда (1), . Первый множитель содержит только вещественные числа и , так как . Ко второму же множителю применим знаменитую формулу Эйлера, получим . Значит, . Ввиду сходимости ряда  при α>1, имеем абсолютную сходимость ряда (1).

На своей области определения дзета-функция аналитична. Действительно, при всяком q>0 и фиксированном α>1+q, числовой ряд  мажорирует ряд из абсолютных величин , где , откуда, по теореме Вейерштрасса, следует равномерная сходимость ряда  в полуплоскости . Сумма же равномерно сходящегося ряда из аналитических функций сама является аналитической функцией.

Нетрудно показать, что все полученные для дзета-функции формулы без изменений переносятся на случай комплексного аргумента. Доказательства претерпевают незначительные преобразования, связанные с переходом к абсолютным величинам.

В связи с этим замечанием становится возможным использовать разложение дзета-функции в произведение , где s теперь любое комплексное число, такое, что . Применим его к доказательству отсутствия у функции  корней.

Оценим величину , используя свойство модуля : , где как обычно . Так как , то , а , следовательно, дзета-функция в нуль не обращается.

Вопрос о нулях дзета-функции, а также другие прикладные вопросы получают новые широкие возможности для исследования, если распространить её на всю комплексную плоскость. Поэтому, сейчас мы одним из многих возможных способов найдём аналитическое продолжение дзета-функции и выведем её функциональное уравнение, характеризующее и  однозначно определяющее .

Для этого нам понадобится формула

  (2), которая выводится следующим образом. Используя свойства интегралов можно записать . Для любого d при  ,  значит  и , а . . Следовательно,   . Интеграл  можно найти интегрированием по частям, принимая , ; тогда , а . В результате  . Вычтем из этого интеграла предыдущий и получим , отсюда легко следует равенство (2).

Теперь положим в (2) , , a и b – целые положительные числа. Тогда  . Пусть сначала , примем a=1, а b устремим к бесконечности. Получим . Прибавим по единице в обе части равенств:

                                                                        (3).

Выражение  является ограниченным, так как , а функция  абсолютно интегрируема на промежутке  при , то есть при , . Значит, интеграл  абсолютно сходится при , причём равномерно в любой конечной области, лежащей в комплексной плоскости справа от прямой . Тем самым он определяет аналитическую функцию переменной s, регулярную при . Поэтому правая часть равенства (3) представляет собой аналитическое продолжение дзета-функции на полуплоскость  и имеет там лишь один простой полюс в точке  с вычетом, равным единице.

Для  можно преобразовать выражение (3) дзета-функции. При  имеем , значит,  и. Теперь при  (3) может быть записано в виде .

Немного   более  сложными  рассуждениями  можно   установить,  что   в действительности (3) даёт аналитическое продолжение дзета-функции на полуплоскость . Положим , а , то есть   первообразная для .  ограничена, так как , а интеграл   и   ограничен из-за того, что . Рассмотрим интеграл  при x1>x2 и . Проинтегрируем его по частям, приняв , , тогда , а по указанному выше утверждению . Получаем  . Возьмём , а . Имеем , ,  потому  что    является   ограниченной   функцией.   Значит,

                                                                         (4).

Пользуясь абсолютной сходимостью интеграла , если , и ограниченностью функции , делаем вывод, что в левой части равенства (4) интеграл тоже сходится при . Значит формулой (3) можно продолжить дзета-функцию и на полуплоскость правее прямой .

Нетрудно установить, что для отрицательных  , поэтому из (3) имеем

                                                                                        (5) при .

Из теории рядов Фурье известно, что для нецелых значений x справедливо разложение в ряд

                                                                                     (6).

Подставим его в равенство (5) и проинтегрируем ряд почленно:

. Сделаем в полученном интеграле подстановку , отсюда следует , а , и получим далее . Известно, что  , значит  . Из известного соотношения для гамма-функции , по формуле дополнения , следовательно  

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.