скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыШпаргалка: Информатика

7.3. ОКМД

 Успехи в микроэлектронике позволяют использовать целые матрицы CPU, работающих по одной и той же проге с разными данными. Такие структуры эффективны при векторной и матричной обработке. Каждый CPU имеет связи с соседним CPU. Однако эффективная работа подобных схем возможна только на матричных и векторных задачах. В подобных структурах очень тяжело обеспечить загрузку аппаратуры, поскольку отсутствует теория параллельного программирования. Поэтому данная структура находит ограниченное применение.

 Структуры ОКМД могут быть реализованы в CPU исполнении в виде сопроцессоров для больших ЭВМ. Например, в серверах сети эти структуры могут обслуживать большие хранилища информации, повышая производительность и скорость обработки данных. В ПЭВМ появление таких сопроцессоров маловероятно.

7.4. Структуры МКОД.

 МКОД - это структуры типа конвейер

Структуры этого типа не нашли большого применения в ВС. Это обусловлено тем, что обычно все ЭВМ (CPU) универсальны в своей основе. Поэтому нет необходимости обеспечивать конвейерную обработку. Кроме того программный принцип управления не дает возможность организовать эфф длинные конвейеры. Обычно считается, что линейный участок проги не превышает 7-10 (15) команд. После этих команд конвейер перезапускается.

 Как вариант можно рассматривать многофункциональную обработку в существующих ЭВМ:

а) во всех современных ЭВМ имеется совмещение операции при которой организуется II-ная работа отдельных блоков (выборка команды, выборка операндов и т.д.)

б) как вариант конвейера можно рассматривать II-ную обработку центрального CPU ЭВМ и сопроцессора.

в) конвейер мы находим в суперЭВМ, когда обеспечивается подпитка информации в кэш-памяти в память команд и в память данных.

г) в сетях ЭВМ возможна II-ная работа нескольких клиентов с одной центральной БД. Но эта дисциплина обслуживания больше относится к структуре МКМД.

7.5. МКМД

 Наиболее интересным видом является МКМД. Эта структур дает множество структур. Обычно эти структуры различают по степени связанности: сильносвязанные и слабосвязанные.

Архитектура МКМД в самом простом варианте предполагает наличие нескольких автономных вычислителей, каждый из которых работает с собственным потоком заданий. Такая структура увеличивает производительность системы, очень проста по построению и управлению.

 Более интересны структуры у которых информационные потоки ветвятся образуя II-ные ветви.

 Если вычислители находятся в непосредственной близости друг от друга, то они сильно связаны. Интенсивность передачи информации в таких системах может быть очень высокой и осуществляться небольшими порциями.

 Симметричные структуры могут относиться к архитектуре ОКМД, где в узлах матрицы CPU находятся отдельные микропроцессоры, способные передавать своим соседям отдельные байты или слова информации.

 Симметричные структуры строятся их однотипных элементов, что упрощает построение и управление структурой в целом. Однако обеспечить полную загрузку подобных структур практически не удается. Для этого отсутствуют методы программирования и языки программирования. Кроме того, очень тяжело обеспечить передачу данных между CPU, не являющимися соседними. А значит класс эффективно решаемых задач резко сужается.

 Подобные системы не могут найти очень широкого распространения. Их удел - только специальные виды вычислений, т.е. векторы и матрицы.

 SMP - структуры - это системы, подключенные к CPU к ООП.

 Это мультипроцессирование с разделением памяти.

 Появление мощных CPU типа Pentium привело к появлению многопроцессорных систем на их основе. На общей шине ОП можно комплексировать 2, 4 и до 10 CPU.

 Однако увеличение числа комплексируемых CPU приводит к появлению большого количество конфликтов. Поэтому в ПЭВМ таких систем не ожидается, а такие системы могут встречаться только при построении серверов сети. Каждый сервер управляет своей группой клиентов; поскольку интересы пользователей различны, то появление конфликтов маловероятно. CPU ведут обработку параллельно, не мешая друг другу.

1. Системы массового параллелизма MPP.

 В них предполагается менее интенсивное взаимодействие комплексируемых CPU или ЭВМ. Здесь вычислители более автономны, поэтому их взаимодействие предполагает передачу и прог и данных. Частота обмена небольшая.

 Различают:

MPP - системы массового параллелизма (это многопроцессорные)

сети - они многомашинные

 MPP предполагают комплексирование десятков, сотен и даже тысяч CPU расположенных в непосредственной близости друг от друга (в пределах корпуса одной большой ЭВМ).

 Все CPU-ные элементы связаны друг с другом единой коммутационной средой. Здесь возникают проблемы аналогичные симметричным структурам, но на новой технологической основе.

 Основные отличия:

- обмен данными идет не единичными данными, а целыми пакетами, т.е. прогами и обеспечивающими их данными.

 Данный принцип обмена не соответствует принципам программного управления классических ЭВМ.

 Передача пакетами больше соответствует принципу построения потоковых машин (управляемых потоками данных).

Принцип построения подобных машин на последних двух лекциях.

 Этот подход позволяет строить системы с громадной производительностью и реализовывать проекты с любыми видами параллелизма.

 В пределе можно реализовывать систематические вычисления.

Режим работы CPU в системах.

 В вычислительных системах может иметь место 3 вида режимов:

1. Режим “ведущий-ведомый”

2. Симметрическая или однородная обработка во всех CPU

3. Раздельная независимая работа CPU по обработке задания

 1. Этот режим может быть реализован в любой ПЭВМ. В пакете NC в меню link мы может организовать связь двух CPU: один ведущий (“master”) и периферийный

 2. Она наиболее сложная. Предполагает построение очень сложной ОС. Под действием этой ОС все CPU выполняют одну и ту же прогу, но у командного CPU свои данные.

 3. Она обычно осуществляется под управлением собственной ОС. Общая ОС является небольшой надстройкой этих автономных систем.

1. Предпосылки появления и развития ВСт.

 Вычислительная сеть - это система взаимосвязанных и распределенных ЭВМ, ориентированных на коллективное использование общественных ресурсов. В качестве ресурсов сети используются аппаратные, программные и информационные объекты.

 Цель создания - это обеспечение удобного и надежного доступа пользователей к ресурсам.

 Сети позволяют решить 2 проблемы:

 1. Неограниченный доступ пользователей к ЭВМ независимо от территориального расположения.

 2. Возможность оперативного перемещения больших массивов информации для использования.

 В сетях ЭВМ все машины могут работать автономно. Они могут автоматически связываться друг с другом под управлением ОС сети.

 Для построения сети используется система передачи данных и каналообразующая аппаратура, относящаяся к 4-му уровню комплексирования:

- каналы связи

- мультиплексеры

- модемы

- адаптеры

 Преимущества:

1. Параллельная обработка данных

2. Возможность создания распределенных БД

3. Возможность обмена большими объемами информации

4. Коллективное использование ресурсов

5. Гораздо больший перечень услуг

6. Повышение эффективности применения ЭВМ и ВТ

7. Оперативное перераспределение мощности и резервов

8. Сокращение расходов на приобретение и эксплуатацию технических и программных средств

9. Облегчение работ по совершенствованию сети

2. Классификация сетей

 В настоящее время сети развиваются очень бурно, поэтому любая классификация старее очень быстро.

 Сети - это достаточно сложные системы, и необходимо использовать временные классификации для их изучения.

 Более важные признаки классификации:

1. Признак территориальной рассосредоточенности. Различают:

- Глобальные сети :

машины могут быть разнесены на 1000 км при этом используются сложные системы передачи данных

- Региональные:

Промышленные города или группа городов (подмосковье). Машины разнесены на десятки км. Для передачи данных - телефонная сеть.

- Локальные сети:

машины удалены на 10-100 метров в качестве сети выступают провода

2. По функциональной принадлежности сети различают:

- Информационные:

история сетей назначения к созданию

- Вычислительные:

наличие вычислительных сетей передача сигналов информации

- Информационно-вычислительные:

стали появляться чисто информационные сети (военные)

 Увеличение роли передачи информации привело к усложнению ОС. В настоящее время операционные системы сети позволяют решать следующие задачи:

1. Удаленный ввод, вывод заданий.

2. Передача файлов между ЭВМ.

3. Доступ к удаленным файлам.

4. Работа с распределенными банками данных.

5. Одновременная передача текстовых и речевых данных.

6. Получение всевозможных справок о наличии ресурсов.

7. Защита данных и ресурсов от несанкционированных действий.

8. Распределение и обработка информации на нескольких ЭВМ.

3. Информационный признак.

 Различают сети:

- с централизованными банками данных

- с распределенными банками данных

- с локальными банками данных

4. Структурный признак.

5 признак. По способу управления ресурсами сети. Различают:

- системы с жестким управлением

- сети с распределенным управлением

- сети со смешанным управлением

 Все простейшие сети имеют централизованное управление. Они являются более простыми и дешевыми. По мере развития появляется необходимость децентрализации управления.

6 признак. По методам передачи данных в сетях. Различают 4 вида:

1. Передача данных по выделенным каналам связи

2. Связь с коммутацией каналов

3. Связь с коммутацией сообщений

4. Связь с коммутацией пакетов сообщений

3. Структуры вычислительных сетей.

 Любая вычислительная сеть включает в себя в обязательном порядке три атрибута:

1. Базовые системы передачи данных СПД

2. Сеть ЭВМ

3. Абонентская сеть (клиентская сеть)

Обычно это сложившаяся телефонная сеть или радиосеть УКиС. К этой сети подключается вычислительная машина достаточно мощного класса. Большие ЭВМ сети обслуживают большие хранилища информации и проводит крупномасштабные вычисления. Кроме больших ЭВМ имеются средние предназначения для управления ресурсами и клиентами. Эти средние ЭВМ сети называются серверами сети.

 В последнее время ЭВМ связываются друг с другом не только через УК, но и УКиС; оборудованные коммуникационными системами. Эти коммуникационные машины являются специализированными. Применение коммуникационных машин позволяет увеличить эффективность систем передачи данных.

 Каждая ЭВМ имеет развитую абонентскую сеть. В настоящее время каждый абонент связан с сетью через ПК. Развитие сетей предполагает, что абонентская аппаратура должна быть очень дешевой, что это должен быть сетевой компьютер.

 Эти три компонента позволяют формировать самые различные структуры сетей. Для того, чтобы изучать сети, лучше пользоваться понятием архитектура сети.

 Архитектура сети включает в себя:

- логическую

- аппаратурную

- программную структуры

3.1. Логическая структура.

 Рассмотрение логической структуры необходимо при решении задач исследовании.

 Задачи исследования бывают 2-х видов: задачи анализа и задачи синтеза.

 Логические структуры сети предполагает выделение следующих фрагментов:

- вычислительной машины

- выделение главной управляющей машины

- выделение вспомогательной машины

- коммуникационных

- территориального оборудования

 Реальные структуры сети может отличаться от логической. В одной ЭВМ сети могут быть сосредоточены функции вычислительной машины главной управляющей машины и коммутационной машины.

3.2. Аппаратурная структура.

 Из всех возможных структур аппаратурных структур наибольший интерес представляет топологическая структура.

 Топологические структуры могут быть следующих видов:

1. Звездная

Системы этого типа широко распространены и как правило разработка любой сети начинается с этой топологии.

Достоинства этой структуры:

- уменьшение каналов связи

- простота построения и управления

- возможность использования перспективных методов передачи данных

- малые расходы на проектирование сети

Недостатки:

- большая уязвимость сети

- отсутствие резервных путей для доступа к сети

- увеличение задержек при перегрузках центральных ЭВМ

 Обычно звездная топология с течением времени перерастает в иерархическую или своеобразную топологию, что в наибольшей степени отличает от сложившихся систем управления.

2. Распределенная, децентрализованная топология.

 Вычислительная сеть получается путем связи ЭВМ линиями.

Достоинства:

- увеличивается надежность функционирования за счет путей доступа к ресурсам

- улучшение доступа к ресурсам, если они дублированы на каких-то машинах

- усложнение сети за счет увеличения каналов связи

3. Кольцевая структура

 Образуется путем соединения из каналов связи кольцевых ЭВМ, эта структура наиболее надежна, на наиболее дорогостоящая. В современных сетях можно найти элементы всех перечисленных структур.

3.3. Программная структура.

Взаимосвязь вычислительных машин в сетях осуществляется автоматически по мере необходимости. Взаимосвязь идет между пользовательскими программами. Для каждого пользователя эта связь идет напрямую друг с другом. Процедуры связи между машинами очень сложны. Они включают в себя иерархию процедур взаимодействия. Функции каждого уровня в настоящее время стандартизированы Международным комитетом стандартов.

Уровни:

- пользовательский

- представление данных

- сеансовый

- транспортный

- сетевой

- управление информационным каналом

- физический канал

 Набор процедур каждого слоя называется протоколом.

 Семиуровневая система программного обеспечения позволяет связать любую физическую аппаратуру даже разноплатформенную. Все физические различия аппаратуры учитываются программными компонентами сети. Горизонтальные связи между элементами показывают связь уровней напрямую. Совокупность семантических (смысловых) и синтаксических (грамматических) правил, определяющих работу устройств в процессе связи называются протоколами. Все процедуры взаимодействия детализируются программными компонентами в нижележащих и представляются в более общем виде вышестоящих уровней.

1 уровень. Самый верхний - пользовательский или прикладной уровень. Объединяет все правила взаимодействия программ пользователя.

2 уровень. Представления. отвечает за представление данных подлежащих пересылке.

3 уровень. Сеансовый. организует проведение сеанса связи между прикладными процессами.

4 уровень. Транспортный. Управляет передачей данных от источника к адресату. Между 3 и 4 уровнями обычно производится складирование информации.

5 уровень. Сетевой. Отвечает за маршрутизацию, коммутацию и адресацию сообщений, после чего управляет потоками данных.

6 уровень. Уровень управления информационным каналом. Отвечает за подключение, поддержание и разъединение каналов связи.

7 уровень. Физический уровень. Обеспечивает электрическое, механическое и функциональное подключение к каналам связи.

 Все семиуровневые модели отдельно располагаются коммуникационные машины, обеспечивающие сетевую службу (3 нижних уровня). Основу работы сетевой службы как правило составляет стандарт X25-ISO. Все дальнейшие информационные и коммуникационные технологии используют протоколы этого стандарта в виде основы. Семиуровневая система протоколов позволяет строить так называемые открытые системы OSI. Это название отражает способность систем подключать любое аппаратурное и программное оборудование не обязательно однотипное и одноплатформенное.

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.