скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Технологии создания сетей

                                 |

                                 |

                  ---------------V------------------------

      [ Введение] |  |  | [сеть] | [подсеть] | [ машина ]|

      [ подсетей] ----------------------------------------

                 [5] Рис.23-3. Пример адресации подсетей

[КС 23-9]

[5]Введение адресов подсетей является полезным в ряде случаев. Рассмотрим

пример. Вообразим большую компанию, имеющую несколько сетевых сегментов.

Каждый сегмент располагается в отдельном здании и обслуживает различные

отделы, департаменты и т.п. Возникает потребность в обеспечении интерсетевых

соединений. Сети компании присваивается адрес Класса В 134.123. Однако

имеется необходимость обеспечить "скоростную" изоляцию отдельных сетевых

сегментов в условиях единственности адреса сети. Для решения этой проблемы

вводится 8-ми битовый адрес подсети. В результате получается более 250

номеров подсетей, которые могут быть назначены различным сегментам сети

компании. Каждая подсеть в данной ситуации может иметь более 250 адресуемых

устройств. Для данного примера адрес 134.123.15.2 трактуется следующим

образом: 134.123 - адрес сети, 15 - адрес подсети, 2 - адрес ЭВМ.

[5]Опции

[5]Поле опций имеет переменный размер, что позволяет связать с

IP-дейтаграммой различные необязательные услуги. Примерами таких услуг

являются: прослеживание маршрута (получение трассы следования дейтаграммы

в интерсети); простановка временных отметок (с целью изучения временных

характеристик процесса доставки дейтаграммы); защита информации. Чаще других

это поле используется разработчиками потокола для введения разного рода

новаций в ранние редакции реализаций протокола IP. Опция защиты информации

была введена для обеспечения безопасной передачи данных в рамках окружений

с ограниченным доступом.

[КС 23-10]

         [ Формат пакета TCP ]

            [ 32 бита ]

       [ к рис. на стр. 23-11 (в поле рисунка)]

[1]Протокол управления передачей данных - TCP

[5]Протокол управления передачей данных TCP (Transmission Control Protocol)

является основным транспортным пртоколом интерсети. TCP обеспечивает прием

сообщений любого размера от высокоуровневых протоколов (ULP - Upper-Layer

Protocols) и их полнодуплексную, подтверждаемую передачу, ориентированную

на соединение с управлением потоком данных. Указанным образом передача

сообщений выполняется между двумя обьектами, локализованными в двух различных

станциях, подключенных к интерсети, и реализующих протокол TCP.

В соответствии с протоколом TCP данные передаются в виде

неструктурированного байтового потока. Каждый байт идентифицируется

последовательным номером. В целях экономии времени и оптимального

использования полосы пропускания TCP поддерживает определенное число

одновременных ULP-взаимодействий.

В следующих подразделах описывается формат пакета TCP, более подробно

рассматриваются функции, решаемые протоколом TCP.

[5]Порт источника (Source Port)

[5]С помощью 16-ти битового поля Порт источника осуществляется идентификация

ULP-источника. Чаще всего порты назначаются протоколом TCP динамически.

Однако существует список номеров "известных" портов, назначенных

общедоступным высокоуровневым протоколам: TELNET, FTP и SWTP. Номера

"известных" портов приводятся в специальном документе "Assigned Numbers" RFC.

[КС 23-11]

[5]Порт назначения (Destination Port)

[5]Поле Порт назначения аналогично по организации полю Порт источника,

содержимое этого поля представляет собой ссылку на высокоуровневый

протокол узла назначения.

[5]Номер последовательности (Sequence Number)

[5]Тридцатидвухбитовое поле Номер последовательности обычно содержит номер

первого байта данных текущего сообщения. Однако в случае, когда установлен

бит SYN (этот бит описан ниже), поле определяет начальный номер

последовательности (ISN - initial sequence number), который необходимо

использовать при приеме. В случае, когда сообщение разделяется на несколько

частей, TCP использует Поле последовательности для корректной сборки

сообщения и гарантированной его доставки высокоуровневому протоколу (ULP).

[5]Подтверждаемый номер (Acknowlegment Number)

[5]В случае, когда установлен бит ACK (определен ниже), в 32-х битовом

поле Подтверждаемый номер содержится номер следующего байта данных,

прием которого ожидается на стороне передатчика данного сообщения.

Начальное значение Номера последовательности не может быть нулевым, но в

нашем примере мы будем использовать для простоты именно это значение.

Так, например, если входящий неповрежденный пакет имеет область данных

размером 40 байтов и значение номера последовательности равно 0, то в

возвращаемом пакете в качестве значения подтверждаемого номера будет

передано 40.

Механизм подтверждения TCP разработан с целью наиболее эффективного

использования полосы пропускания сети. Вместо того, чтобы подтверждать

прием каждой порции данных, в TCP подтверждение задерживается до тех пор,

пока не будет отработана целая серия актов передач, которые затем совокупно

и подтверждаются. Рассмотрим пример. Пусть выполняется четыре передачи из

узла А в узел В, каждая переносит 20 байтов информации. Пусть пакеты имеют

номера последовательности 30, 50, 70 и 90 соответственно. В конце четвертого

акта передачи узел В может сформировать один пакет, подтверждающий корректный

прием всех четырех пакетов узла А. Для этого в поле формируемого узлом В

пакета Подтверждаемый номер помещается значение 110 (90+20). При этом

считается, что подтверждается успешная передача всех байтов вплоть до 109-го.

[5]Смещение данных (Data Offset)

[5]В четырех-битовом поле Смещение данных указывается длина заголовка TCP

в 32-х битовых словах. Длина заголовка является переменной, поскольку размер

поля "Опции" (определено ниже) переменный.

[5]Резервное (Reserved)

[5]Поле (6 бит) является резервным. Все конкретные реализации протокола TCP

должны обеспечить нулевое значение этого поля.

[КС 23-12]

[5]Флаги

[5]Биты флагов используются для передачи управляющей информации. Флаги

применяются, в частности, для установления соединения, завершения соединения

и т.п. Ниже приведена семантика флагов.

Флаг URG (URGent - срочный) указывает, что поле Указатель срочных данных

(Urgent pointer) является значащим.

Флаг ACK (ACKnowledge - подтверждение) указывает, что поле Подтверждаемый

номер является значащим.

Флаг PSH (PuSH, срочные данные). Если флаг установлен, то он указывает

передающему TCP на необходимость выдачи данных в канал, организованный

нижележащими уровнями. Он также указывает принимающему TCP на необходимость

немедленной доставки всех данных, поступающих через этот канал, своему ULP.

Обычно TCP накапливает данные со смежных уровней, а транспортировку их

осуществляет сообразно обстоятельствам. Флаг PSH нарушает этот порядок.

Флаг RST (ReSeT - сброс). Флаг RST используется для перевода транспортного

соединения в исходное состояние, как следствие фиксации одной из сторон

ненормального состояния.

Флаг SYN (SYNchronize - Синхронизация). Данный флаг устанавливается в первых

кадрах, передаваемых обеими сторонами друг другу. Взведенный флаг SYN

указывает на намерение сторон установить и синхронизировать виртуальное

соединение. При этом используется процедура "тройного рукопожатия" ("three

way handshake"). В соответствии с процедурой инициатор установления

соединения передает пакет с установленным флагом SYN, указывая также

некоторое начальное значение (Х) поля Номер последовательности. Приемная

сторона отвечает пакетом с установленными флагами SYN и ACK. При этом в поле

Подтверждаемый номер помещается величина Х+1, а в поле Номер

последовательности - некоторое начальное значение (Y). Инициатор

установления соединения в свою очередь формирует и передает пакет с

установленным флагом ACK и со значением Y+1 в поле Подтверждаемый номер.

В результате соединение считается установленным.

Флаг FIN (FINish - завершение). С помощью флага FIN передатчик указывает на

отсутствие данных для передачи и на намерение завершить транспортное

соединение.

[5]Окно (Window)

[5]16-ти битное поле Окно определяет число байтов данных, начиная с номера,

указанного в поле "Подтверждаемый номер", которые хотел бы принять

передатчик. Данное поле, совместно с полями Номер последовательности и

Подтверждаемый номер, используется при реализации

механизма управления потоком данных, основанного на понятии окна и

заключающегося в следующем.

Предположим, что станция А посылает файл станции В. Станция В, как правило,

имеет окно размером 80 байтов. Станция В только что приняла четыре пакета

от станции А по 20 байтов каждый.

[КС 23-13]

[5]На станции В принятые 80 байтов были быстро обработаны так, что в своем

ответе станция В подтверждает прием 80 байтов, указывая окно 80. Тогда

станция А передает очередные 4 пакета по 20 байтов каждый. Однако на

станции В началась работа с другой задачей, что привело к формированию

ответа, подтверждающего прием 80 байтов с уменьшенным до 40 значением окна.

В условиях отсутствия ресурсов для приема входного потока данных значение

поля Окно может стать даже нулевым.

Следует отметить, что механизм оконной нарезки для управления потоком данных

в TCP обеспечивает полнодуплексную работу. Обе взаимодействующие стороны

могут передавать данные одновременно.

[5]Контрольная сумма (Checksum)

[5]Данное 16-ти битовое поле используется для контроля правильности

передачи заголовка пакета. Если вычисленная контрольная сумма не совпадает

с содержимым данного поля, то пакет уничтожается.

[5]Указатель срочных данных (Urgent pointer)

[5]Данное 16-ти битовое поле содержит смещение относительно значения поля

Номер последовательности, указывающее положение срочных данных. В

действительности значение этого поля указывает на первый байт данных, который

непосредственно следует за последним байтом срочных данных.

Срочные данные (urgent data) представляют собой данные, которые с точки

зрения ULP считаются очень важными. Зачастую, это управляющая информация,

например, сигналы прерывания с клавиатуры. В рамках TCP не предпринимается

никаких действий в отношении этих данных.

[5]Опции (Options)

[5]Поле Опции имеет переменный размер и, если присутствует, то следует за

полем Указатель срочных данных. Поле должно быть выровнено по байтовой

границе. Наиболее распространенная опция - это "максимальный размер сегмента", она

используется в ходе фазы установления соединения для того, чтобы определить

наибольший по размеру сегмент данных, который TCP может принять (от

протокола более высокого уровня - ULP).

[КС 23-14]

[1]Другие важные межсетевые протоколы

[5]Протокол маршрутизации (Routing information protocol - RIP)

[5]Протокол RIP подобно протоколу ICMP обеспечивает работоспособность

протокола IP. С его помощью формируется согласованная информация о сетевых

маршрутах и связности интерсетей, которая используется протокольными

IP-объектами, резидированными в сетевых ЭВМ. В соответствии с протоколом RIP

периодически выполняется передача текущей маршрутной информации. Маршрутная

информация представляет собой список сетей назначения с указанием удаления,

на котором от них находится источник данной информации. Удаление задается

числом переходов (hops) по транзитным сетям до целевой сети (точнее числом

промежуточных маршрутизаторов).

Протокол RIP находит широкое применение, поскольку некоторые его реализации

включены в операционную систему UNIX 4.2 BSD и во многие ее более поздние

диалекты. Несмотря на свою популярность протокол RIP имеет ряд недостатков,

которые могут привести к ограничению его использования в будущем. В частности,

он не приспособлен к работе в больших, сложных интерсетях.

[5]Межсетевой протокол управления (ICMP - Internet Control Message Protocol)

[5]Протокол ICMP сопровождает и обеспечивает работоспособность протокола IP

в части контроля за ошибками сети и ее диагностики. Это связано с тем, что

протокол IP является дейтаграммным и не обеспечивает исполнение указанных

функций. Протокол ICMP в этом смысле дополняет протокол IP, предоставляя

протоколу TCP или другим высокоуровневым протоколам, т.е. ULP, диагностическую

информацию. Некоторые из наиболее общих ICMP-сообщений перечислены ниже.

Истечение таймера (Time Exceeded). Данное сообщение указывает, что счетчик

Ввремя жизни (TTL) пакета принял значение 0, поэтому этот пакет удален.

Цель недоступна (Destination Unreachable). Данное сообщение указывает на то,

что пакет не может быть направлен в узел назначения из-за отсутствия связности

сети.

Торможение (Source Quench). С помощью данного сообщения передатчику

предлагается уменьшить темп передачи из-за того, что или станция назначения,

или промежуточные узлы не способны его поддержать.

Изменить маршрут (Redirect). Данное сообщение передается источнику, чтобы

проинформировать его о существовании более оптимального маршрута к станции

назначения.

Эхо (Echo Request and Echo Reply). Сообщение Эхо-запрос передается

узлу назначения для того, чтобы определить, имеется ли с ним связь. Если

узел назначения получает Эхо-запрос, то он посылает в ответ сообщение

Эхо-отклик. Известная утилита ОС UNIX под названием Ping основывается на

данном механизме ICMP.

[КС 23-15]

[5]Протокол передачи дейтаграмм (UDP - User Datagram Protocol)

[5]Протокол UDP подобно протоколу TCP обеспечивает транспортный сервис.

Однако в отличие от TCP в протоколе UDP отсутствует фаза установления

транспортного соединения и не осуществляется подтверждение приема данных.

Протокол UDP выполняет только транспортировку данных (дейтаграмм), полученных

от высокоуровневых протоколов (ULP). Заголовок UDP представлен на следующем

рисунке.

             0                  16               31

             --------------------------------------

             | Порт источника  |  Порт Назначения |

             |-----------------|------------------|

             | Длина           | RC UDP           |

             |------------------------------------|

          [5] Рис. 23-4. Заголовок UDP

Протокол UDP не обременен накладными расходами на установление и завершение

транспортного соединения, на управление потоком данных и на обеспечение

других функций TCP. В результате протокол UDP является более скоростным, чем

протокол TCP. По этой же причине и, исходя из простоты реализации, протокол

UDP применяется в качестве средства транспортировки данных многими ULP

(включая NFS, который рассмотрен ниже).

Заголовок протокольного сообщения UDP содержит только 4 поля: Порт источника,

Порт назначения, Длина и Контрольная сумма. В поле Длина указывается размер в

байтах всей дейтаграммы. Другие поля имеют семантику подобную соответствующим

полям заголовка TCP. Контрольная сумма (КС UDP) является необязательной, но

при ее подсчете учитывается не только содержимое всей дейтаграммы, но также и

"псевдозаголовка". Псевдозаголовок создается в нарущение правил Модели OSI,

погружаясь в детали IP за адресной информацией протокола IP. IP-адреса

применяются, в частности, для контроля правильности доставки дейтаграммы

(поскольку заголовок UDP не содержит адресной информации, указывающей

ЭВМ назначения).

[5]Протокол передачи файлов (File Transfer Protocol - FTP).

[5]Протокол FTP является протоколом сетевых процессов и предоставляет

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.