скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Схемотехническое и функциональное проектирование вакуумной коммутационной аппаратуры

обеспечения (ПИО).  Вся информация о существующих конструкциях ВКА

и вспомогательная справочная информация хранится в  банках  данных

системы  (БнД).  Связь конструктора с ЭВМ в диалоговом режиме осу-

ществляется с использованием алфавитно-цифрового дисплея  (АЦД)  и

символьно-графического дисплея (СГД).

     Проектирующие подсистемы представляют собой функционально за-

конченные  части  системы,  последовательно реализующие выделенные

этапы проектирования ВКА. К ним относятся подсистемы выбора и ана-

лиза аналогов и прототипов ВКА (ВАВКА, ААВКА, ВПВКА и АПВКА), син-

теза и анализа физических принципов действия ВКА  (СФПД  и  АФПД),

структурного синтеза и анализа (ССВКА и САВКА), качественного син-

теза и анализа (КСВКА и КАВКА), параметрического синтеза и анализа

(ПСВКА  и  ПАВКА),  компоновки ВКА и ее анализа (КВКА и АКВКА),  а

также подсистемы выбора и анализа аналогов и прототипов  приводов,

вводов  движения  в вакуум,  механизмов и уплотнительных пар (ВАП,

ВАВВ,  ВАМ, ВАУП, ААП, ААВВ, ААМ, ААУП, АПП, ВПВВ, ВПМ, ВПУП, АПП,

АПВВ,  АПМ, АПУП). Кроме этого в системе имеются подсистемы струк-


                              - 125 -

турного синтеза основных составных элементов ВКА (ССП,  ССВВ, ССМ,

ССУП),  а  также  предусмотрены подсистемы структурного синтеза их

сборочных единиц (СССБП, СССБВВ, ССЭУП).

     Функционирование системы  происходит  следующим  образом.  По

вводимому конструктором техническому заданию на создание  конкрет-

ной ВКА, являющемуся отправной точкой разработки, система осущест-

вляет поиск аналога ВКА из числа хранимых  в  БнД  и  при  наличии

нескольких аналогов, соответствующих ТЗ, производит их анализ, вы-

бирая наилучшую конструкцию, чертежи которой находятся в конструк-

торском архиве. Если аналоги отсутствуют, конструктор может произ-

вести корректировку ТЗ (например,  производя его усечение  по  не-

основным  показателям  качества),  и  система осуществляет поиск и

анализ прототипов.  Выбор аналогов и прототипов производится в два

этапа:   сначала   проводится   качественная  оценка  существующих

конструкций,  позволяющая определить требуемый тип  ВКА,  а  затем

проводится   количественная   оценка   для   выявления  подходящей

конструкции.  Если прототип ВКА найден, а осуществленная корректи-

ровка ТЗ нежелательна,  то система анализирует внесенные конструк-

тором в ТЗ изменения и выдает дополнительное  ТЗ  на  модернизацию

соответствующего  функционального  устройства - структурный синтез

привода, ввода движения в вакуум, механизма или уплотнительной па-

ры в подсистемы (ССП, ССВВ, ССМ и ССУП).

     Если прототип не найден,  то осуществляется разработка нового

технического  решения ВКА,  удовлетворяющего заданному ТЗ.  В этом

случае система производит с использованием  эвристических  приемов

поиск и выбор ФПД ВКА. На основе выбранного ФПД производится выяв-

ление всевозможных  структурных  схем,  анализ  и  синтез  которых

представляется  целесообразным.  После  получения структурных схем

определяется качественный состав ФМ ВКА, а на основе моделирования

- оцениваются значения их параметров качества.  Затем система ана-


                              - 126 -

лизирует  параметрические  характеристики  найденных  структур  на

соответствие ТЗ и если структуры, соответствующей ТЗ, нет, то син-

тезируется новая структура на основе другого ФПД  или  корректиру-

ется ТЗ в сторону смягчения предъявляемых требований.

     Если синтезированная  структура  соответствует   ТЗ,   то   в

подсистеме  ПАВКА  формируют частные ТЗ на основные элементы ВКА -

привод,  ввод движения в вакуум,  механизм и уплотнительную  пару.

Далее  система выполняет процедуры поиска и выбора аналогов и про-

тотипов этих структурных составляющих,  аналогичные процедурам по-

иска  и  выбора аналогов и прототипов ВКА.  При этом в подсистемах

анализа прототипов в случае необходимости формируется ТЗ на струк-

турный  синтез сборочных единиц привода,  ввода движения в вакуум,

механизма и элементов уплотнительной пары (СССБП,  СССБВВ,  ССМ  и

ССЭУП).  Если прототип не найден, то осуществляют структурный син-

тез новых технических решений  этих  устройств:  подсистемы  (ССП,

ССВВ, ССМ, ССУП).

     Структурный синтез и анализ новых конструкций ВКА или их эле-

ментов,  аналогично выбору аналогов и прототипов ВКА, также прово-

дится в два этапа: сначала качественно, а затем количественно.

     В зависимости  от наличия аналогов и прототипов элементов ВКА

система производит компоновку ВКА из аналогов или из  модернизиро-

ванных прототипов,  либо из элементов,  полученных в результате их

синтеза,  и осуществляет выбор оптимальной компоновки. После этого

с  использованием уравнения функционирования ВКА (этап моделирова-

ния)  осуществляется  окончательный  параметрический  анализ  ВКА,

спроектированной на основе оптимальной компоновки. Если полученная

конструкция ВКА не соответствует ТЗ,  то осуществляется  корректи-

ровка ТЗ на элементы ВКА и процесс проектирования повторяется.

     Введение в структуру САПР нового этапа - качественного синте-

за  и  анализа  ВКА позволяет выбирать наиболее целесообразные для


                              - 127 -

дальнейшего рассмотрения конструкции, что значительно снижает вре-

мя  работы системы.  Ускорению процесса проектирования и улучшению

качества проектного решения способствует наличие обратной связи  -

постоянной,  после каждого этапа,  проверки получаемой конструкции

на соответствие ТЗ.

     Основными функциями,  выполняемыми подсистемами выбора и ана-

лиза аналогов и прототипов ВКА и их элементов, являются следующие:

формирование  по  ТЗ параметрической модели ВКА;  выбор аналогов и

прототипов, соответствующих ТЗ, формирование интегральных критери-

ев качества ВКА и ее элементов;  выбор наилучшего аналога и прото-

типа из числа отвечающих требованиям ТЗ; формирование ТЗ на модер-

низацию структурных составляющих ВКА и их сборочных единиц.

     Основными процедурами в подсистемах СФПД и АФПД являются:

построение множества  ФПД  ВКА;  выявление множества структур ФПД;

выбор допустимых структур  ФПД;  технологический  и  экономический

анализ ФПД; выбор рациональной структуры ФПД.

     В подсистемах ССВКА и САВКА выполняются следующие процедуры:

формирование множества  структурных  схем  ВКА;  синтез допустимых

структурных схем;  оценка и выбор рациональных  структурных  схем;

корректировка принятых решений.

     В подсистемах КСВКА и КАВКА осуществляют определение  качест-

венного  состава  структурных элементов схем ВКА и выбор среди ка-

чественных структурных схем рациональных решений.

     В подсистемах  ПСВКА и ПАВКА осуществляют:  проектировочные и

поверочные расчеты ВКА;  определение выходных параметров структур-

ных элементов ВКА;  формирование критериев оптимальности и ограни-

чений;  оптимизацию параметров ВКА;  анализ оптимальной компоновки

ВКА;  корректировку  принятого решения в подсистеме ССВКА или кор-

ректировку ТЗ;  формирование проектной документации;  формирование

ТЗ для выбора или проектирования структурных составляющих ВКА.


                              - 128 -

     Основными процедурами в подсистемах  КВКА  и  АКВКА  являются

следующие: синтез компоновок из элементов ВКА; формирование крите-

рия качества компоновок;  анализ и выбор  оптимальной  компоновки;

формирование проектной документации.

     При использовании описанной САПР в качестве подсистемы в  ГАП

ВКА  обязательным процессом является процедура проверки синтезиро-

ванных значений параметров ВКА  требованиям,  определяемым  техни-

ческими характеристиками автоматизированной производственной ячей-

ки (станок,  робот,  комплекты оснастки и инструмента), являющейся

элементом конкретной ГАП [152].  Кроме того, предусмотрена система

адаптации базы данных и накладываемых граничных условий к  измене-

нию  станочного  парка производства,  появлению новых технологий и

др.

     Использование подобной САПР, повышая качество и эффективность

труда конструктора, позволит ему получать принципиально новые тех-

нические решения.

     4.4. Конструкции ВКА, разработанные на основе синтезированных

          структур.

     4.4.1. Конструкции ВКА,  разработанные на основе  синтеза  ее

            структуры на уровне типов основных ФМ.

     Сопоставительный анализ  сформированного  с учетом морфологии

ВКА множества ее обобщенных вариантных структур (с  использованием

программного  модуля "VP1") и существующих конструкций ВКА показал

отсутствие ВКА плоского типа  с  использованием  электромагнитного

привода. Данный факт определил цель проектирования соответствующей

конструкции затвора.  В связи с тем, что величина хода штока типо-

вого  электромагнитного  привода  не позволяет обеспечить сложного


                              - 129 -

движения и требуемых перемещений уплотнительного диска для  перек-

рывания  проходного  отверстия  и  герметизации  УП в плоских уст-

ройствах, в качестве прототипа была выбрана разработанная нами ба-

зовая  конструкция  сверхвысоковакуумного затвора с двумя исполни-

тельными органами и электропневматическим приводом  [153].  Приняв

за основу структуру,  генерируемую по правилу (3.22),  получаем из

выражения (3.30) искомую формулу строения создаваемого устройства:

    

     Общий вид разработанного затвора  представлен  на  рис.  П.6,

П.6А.   Для  согласования  функциональных  параметров  сопрягаемых

основных ФМ совместно с электромагнитным приводом использован гид-

равлический усилитель, т.е. образован комбинированный привод, поз-

воляющий применять подобное решение и для устройств с цельнометал-

лической УП. Проведенный анализ множества     позволил модифициро-

вать описываемую конструкцию за счет использования для перемещения

уплотнительного  диска принципиально нового для ВКА ввода движения

- упруго деформируемого полого элемента - трубки Бурдона. Подобное

выполнение конструкции позволило упростить управление работой зат-

вора,  повысить его быстродействие и  уменьшить  дестабилизирующее

воздействие элементов затвора на вакуумную среду [154].

     Дальнейшее развитие конструкций ВКА,  включающих вводы движе-

ния  -  механизмы  непосредственного действия,  не содержащие пары

трения в вакуумной  полости,  обусловило  необходимость  получения

структуры с одним исполнительным органом. Формула строения данного

устройства получена из выражения (3.32) :

     Общий вид конструкции сверхвысоковакуумного затвора ,  реали-

зующей данную цель, приведен на рис. П.7, П.7А-В.

     Подобное выполнение затвора позволило использовать в структу-

ре  только один исполнительный орган при сохранении достоинств вы-


                              - 130 -

шеописанной конструкции [155].

     4.4.2. Конструкции ВКА,  разработанные на основе  синтеза  ее

            механизмов.

     Необходимость синтеза  механизмов  обусловлена,  как правило,

использованием электромеханического или ручного привода,  а  также

сложным  видом движения при перекрывании и герметизации проходного

отверстия,  что особенно актуально для плоских и проходных  затво-

ров.  Рассмотрим конструкции ВКА, полученные с использованием раз-

личных путей синтеза ее механизмов (см. п. 3.4.1.).

     Кинематическая схема поворотного затвора, полученная на осно-

ве анализа трехконтурной формы цепи (с использованием ППП "SSVC"),

реализованной  посредством плоских рычажных механизмов,  приведена

на рис. П.8. Формулу строения данного устройства, согласно (3.35),

можно представить в виде:

    

     Проработка и практическое воплощение полученной  схемы  меха-

низма  совмещенной  структуры  (рис.  П.9) обеспечили рациональное

движение уплотнительного диска  при  перекрывании  и  герметизации

проходного отверстия: поступательное его движение на стадии герме-

тизации и поворот уплотнительного диска на 90 на стадиях  открыва-

ния и закрыванияя затвора при небольшом ходе ведущего звена приво-

да.

     Подобное выполнение устройства приводит к повышению ресурса и

надежности работы затвора за счет исключения неравномерности  сжа-

тия уплотнителя и его трения о седло, а также обеспечения фиксиро-

ванного положения уплотнительного диска  в  каждый  момент  работы

затвора, что устраняет возможность его перекосов [120].


                              - 131 -

     Дальнейшая доработка  рассмотренной  конструкции  обусловлена

оптимизацией   созданного   механизма  по  критерию  Ф  (выражение

(2.21)). Оптимизация проводилась для механизма, расположенного вне

вакуумной полости затвора и являющегося собственно его приводом (с

использованием ППП "Р4").  Целью проектирования явилась  необходи-

мость обеспечения различных передаточных функций на стадиях перек-

рывания и герметизации проходного отверстия. Указанная цель реали-

зована  посредством  использования  двух взаимодействующих типовых

элементарных  механизмов  -  попеременно  работающих  эксцентриков

(рис.  П.10),  причем на стадии перемещения уплотнительного диска,

требующей значительных перемещений  при  малых  усилиях,  работает

эксцентрик с большим эксцентриситетом, а герметизация затвора про-

изводится эксцентриком с маленьким эксцентриситетом.  Подобное вы-

полнение устройства позволяет существенно уменьшить приводное уси-

лие для получения требуемого усилия герметизации [156].

     По отношению к используемым механизмам,  особенно расположен-

ным в вакуумной полости,  наиболее  критичны  сверхвысоковакуумные

конструкции, качество которых зачастую определется дестабилизирую-

щим влиянием  на  рабочую  сверхвысоковакуумную  среду  (величиной

привносимой  дефектности).  В связи с этим одной из основных целей

проектирования сверхвысоковакуумных клапанов и  затворов  является

уменьшение числа тяжелонагруженных пар трения в механизмах,  рабо-

тающих в вакуумной полости ВКА, либо полное их устранение, что на-

иболее труднодостижимо для конструкций плоского типа.  Другим важ-

ным аспектом разработки конструкций с электромеханическим приводом

является использование только одного привода для их функционирова-

ния, что определило цели проектирования описываемых ниже конструк-

ций сверхвысоковакуумных прямопролетных плоских затворов.

     На рис.  П.11, П.11А,Б представлен общий вид сверхвысоковаку-

умного затвора,  в котором механизм, расположенный в вакуумной по-


                              - 132 -

лости, обеспечивает поворот уплотнительного диска для перекрывания

проходного отверстия,  что не требует больших усилий, а герметиза-

ция осуществляется механизмом,  расположенным  вне  вакуумной  по-

лости. Формула строения при этом имеет вид:

            

    

     Подобная конструкция является устройством переменной структу-

ры с отключением механизма перемещения при герметизации:

    

     Достоинством разработанного  механизма  перемещения  уплотни-

тельного диска (рис.  П.11Б) является его большое передаточное от-

ношение  при незначительных габаритах,  что приводит к минимизации

критерия Ф [157].

     Вместе с тем,  рассмотренная конструкция достаточно сложна, а

механизм перемещения из-за расположения в вакуумной полости  труд-

норегулируем,  что определило цель проектирования - удаление меха-

низма из вакуумной полости (замена его механизмом непосредственно-

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.