скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Расчёт частотных и временных характеристик линейных цепей




Рисунок 2.1 ‑ АЧХ цепи; размерность w – рад/с, ModK(w) – безразмерная величина


2.3 Определение фазочастотной характеристики цепи

Фазочастотная характеристика цепи (ФЧХ):

(16)

Подставляя числовые значения в (16) получим:

(17)

Результаты расчётов приведены в таблице 2.2, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 2.2


Таблица 2.2 Зависимость ArgK(jw) от частоты

w, рад/с

ArgK(jw), рад

0 0
1*10^7 -0.0799271
3*10^7 -0.3226808
5*10^7 -0.6462386
7*10^7 -0.9086729
9*10^7 -1.0769648
1.1*10^8 -1.1826898
1.3*10^8 -1.2524606
1.5*10^8 -1.3011954
1.7*10^8 -1.3369474
1.9*10^8 -1.3642366
2.1*10^8 -1.3857381
2.3*10^8 -1.4031184
2.5*10^8 -1.4174637
2.7*10^8 -1.42951
2.9*10^8 -1.4397731
3.1*10^8 -1.4486249
3.3*10^8 -1.4563401
3.5*10^8 -1.4631264
3.7*10^8 -1.4691435
3.9*10^8 -1.4745161
4.1*10^8 -1.4793434
4.3*10^8 -1.483705
4.6*10^8 -1.4895127
4.8*10^8 -1.492969
5*10^8 -1.4961411
5.2*10^8 -1.4990628
5.4*10^8 -1.5017629
5.6*10^8 -1.5042658
5.8*10^8 -1.5065924
6*10^8 -1.5087609

-1,5707963



Рисунок 2.2 ‑ ФЧХ цепи; размерность ArgK(w) – рад, w – рад/с



3 РАСЧЕТ ВРЕМЕННЫХ ХАРАКТЕРИСТИК ЦЕПИ

3.1 Определение переходной характеристики цепи

Переходная характеристика цепи:

h(t)=hпр(t)+hсв(t) (18)

Т.к. воздействие – ток, а реакция – ток на индуктивности, следует (см. рисунок 3.1):

,

(19)


где Io – единичный скачок тока.


Для определения режима переходного процесса запишем входное сопротивление в операторной форме:


Рисунок 3.1‑Эквивалентная схема при t стремящемся к бесконечности


(20)

Приравнивая знаменатель к нулю, после несложных преобразований получим:

 или ,

где:

,

(21)

   (рад/с)

(22)

Т.к. , следует режим колебательный, а значит:

,

(23)

где:

 (рад/с)

(24)

– угловая частота затухающих свободных колебаний в контуре, А и  ‑ постоянные интегрирования.

Для определения постоянных интегрирования составим два уравнения для начальных значений (+0) и (+0):

  (25),    (26)   (см.

рисунок 3.2),

(27),

т.к. в момент комутации напряжение на сопротивлении R2 равно напряжению на индуктивности (см. рисунок 3.2).



(28)

(29)

Рисунок 3.2 – Эквивалентная схема в момент коммутации

Подставляя выражения (19), (21), (23), (24), (26), (27), (28), (29) в (25) получим:

(30)

(31)

(32)

(33)

Результаты расчётов приведены в таблице 3.1, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 3.3

Таблица 3.1 Расчёт переходной характеристики

t, с h(t)
0 0
1.00e-8 0.303504193
2.00e-8 0.489869715
4.00e-8 0.632067650
5.00e-8 0.642131278
7.00e-8 0.624823543
8.00e-8 0.613243233
1.00e-7 0.597388596
1.10e-7 0.593357643
1.30e-7 0.590241988
1.40e-7 0.590004903
1.70e-7 0.590600383
1.90e-7 0.590939689
2.00e-7 0.591026845
2.20e-7 0.591095065
2.30e-7 0.591100606
2.50e-7 0.591093538
2.60e-7 0.591088357
2.80e-7 0.591081098
3.00e-7 0.591078184

0.591078066


Рисунок 3.3 – Переходная характеристика цепи; размерность t – сек,

h(t) – безразмерная величина

Как видно из рисунка 3.3, свободные колебания затухают достаточно быстро; при таком масштабе рисунка видны колебания в течение, примерно, одного периода свободных колебаний (), однако переходной процесс длится немного дольше, а спустя 0,3 мкс колебаниями можно пренебречь т.к. они достаточно малы (см. таблицу 3.1) и считать переходной процесс завершенным.

3.2 Определение импульсной характеристики цепи

Импульсная характеристики цепи:

(34),

(35),

где 1(t) – единичная функция.


Подставляя (33) в (35) находим:

(36)

Результаты расчётов приведены в таблице 3.2, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 3.4 и 3.5


Рисунок 3.4 – Импульсная характеристика цепи в крупном масштабе; размерность t – сек, g(t) – безразмерная величина

Оба графика имеют одну и ту же шкалу времени, поэтому можно оценить, насколько быстро затухают колебания, и во сколько раз уменьшается их амплитуда за ничтожный промежуток времени.

Таблица 3.2 Расчёт импульсной характеристики

t, c g(t)
0 3.697e7
4.0e-8 2.299e6
6.0e-8 -9.911e5
8.0e-8 -1.066e6
1.0e-7 -5.184e5
1.2e-7 -1.460e5
1.4e-7 -1.503e3
1.8e-7 1.697e4
2.0e-7 6.486e3
2.2e-7 1.167e3
2.4e-7 -412.634
2.6e-7 -482.050
2.8e-7 -240.781
3.0e-7 -70.193
3.2e-7 -2.270
3.6e-7 7.780
3.8e-7 3.053
4.0e-7 0.587
4.2e-7 -0.169
4.4e-7 -0.218
4.6e-7 -0.112
4.8e-7 -0.034
5.0e-7 -1.775e-3
5.4e-7 3.561e-3
5.6e-7 1.434e-3
5.8e-7 2.930e-4
6.0e-7 -6.843e-5
6.2e-7 -9.799e-5
6.4e-7 -5.175e-5
6.6e-7 -1.610e-5
7.0e-7 2.166e-6
7.4e-7 6.730e-7
7.6e-7 1.453e-7
7.8e-7 -2.702e-8
8.0e-7 -4.405e-8

0



Рисунок 3.5 – Импульсная характеристика в более мелком масштабе

; размерность t – сек, g(t) – безразмерная величина


3.3 Расчет отклика цепи на заданное воздействие методом интеграла Дюамеля

При кусочно-непрерывной форме воздействия отклик необходимо искать для каждого из интервалов времени отдельно.

При применении интеграла Дюамеля с использованием переходной характеристики h(t) отклик:

при

,

(37)

где:

y(x) – аналитическое выражение описывающее воздействие (см. рисунок 3.6)

составим аналитическое выражение y(x):

x y
0 0
3*10^-5 7

(38)
Рисунок 3.6 – График воздействия

(39)

Подставляя выражения (33), (39) в(37) и учитывая, что y(0)=0 получим:


Результаты расчётов приведены в таблице 3.3, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 3.7 и 3.8

Таблица 3.3

Расчёт отклика при


t, c i(t), А
0 0
1.0e-6 0.136879881
2.0e-6 0.274798097
3.0e-6 0.412716312
5.0e-6 0.688552743
6.0e-6 0.826470958
7.0e-6 0.964389174
9.0e-6 1.240225604
1.0e-5 1.378143820
1.1e-5 1.516062035
1.3e-5 1.791898466
1.4e-5 1.929816681
1.5e-5 2.067734897
1.7e-5 2.343571328
1.8e-5 2.481489543
1.9e-5 2.619407758
2.1e-5 2.895244189
2.2e-5 3.033162405
2.3e-5 3.171080620
2.5e-5 3.446917051
2.6e-5 3.584835266
2.7e-5 3.722753482
2.8e-5 3.860671697
2.9e-5 3.998589912
3.0e-5 4.136508126



Рисунок 3.7 – Отклик цепи при  в крупном масштабе; размерность


t – сек, i(t) – Ампер

Рисунок 3.8 ‑ Отклик цепи при  в более мелком масштабе; размерность

t – сек, i(t) – Ампер


Поскольку данный график содержит ось времени от 0 до t1, да плюс, как мы увидели по переходной характеристике, затухание происходит очень быстро, увидеть в таком масштабе колебания нельзя. На рисунке 3.8 ось времени содержит значения от 0 и до 2*10^-7 секунд, на этом графике хоть и слабо, но все же видно, что нарастание вначале нелинейное.

при

Результаты расчётов приведены в таблице 3.4, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 3.9

Таблица 3.4

Расчёт отклика при


t, c i(t), А
3.e-5 4.136508126
3.001e-5 2.012978646
3.002e-5 0.708853559
3.004e-5 -0.286479932
3.006e-5 -0.316233940
3.007e-5 -0.236089753
3.009e-5 -0.089807225
3.010e-5 -0.044172156
3.011e-5 -0.015965080
3.012e-5 -7.804401718e-4
3.015e-5 6.723438063e-3
3.016e-5 5.056128946e-3
3.017e-5 3.342384970e-3
3.019e-5 9.685895329e-4
3.020e-5 3.587128387e-4
3.022e-5 -1.187888560e-4
3.024e-5 -1.428833579e-4
3.025e-5 -1.082465352e-4
3.026e-5 -7.200797423e-5
3.028e-5 -2.122389760e-5
3.029e-5 -8.042151551e-6
3.030e-5 -8.306802357e-7

0


Рисунок 3.9 – Отклик цепи при ; размерность t – сек, i(t) – Ампер


Таким образом, отклик на заданное воздействие имеет вид графика изображенного на рисунке 3.10

Рисунок 3.10 – Отклик цепи; размерность t – сек, i(t) ‑ Ампер


ВЫВОДЫ

В процессе выполнения курсовой работы вопросов появляется больше, чем пунктов в задании. Одними из них является семейство вопросов о размерности коэффициентов и промежуточных величин при расчете переходной характеристики, а также размерность ее производной и т.д.

В план закрепления материала, на мой взгляд, идут только первые четыре задания, поскольку с такого рода задачами мы встречались, а последние три задания представляют особую важность, их приходится не закреплять – в них приходится разбираться.

Достоинством данной курсовой работы является подбор в ней заданий, они не являются нудными и однообразными как, например, курсовые по механике, в которых все одно и тоже и в пять раз больше.


СПИСОК ИСПОЛЬЗОВАНЫХ ИСТОЧНИКОВ

1.   В. П. Шинкаренко, П. Ф. Лебедев. Методические указания к курсовой работе по курсу « Теория электрических и магнитных цепей». ‑ Харьков: «ХГТУРЭ», 1993.

2.   Т. А. Глазенко, В. А. Прянишников. Электротехника и основы электроники. – М.: «Высшая школа», 1985.

3.   Г. И. Атабеков. Теоретические основы электротехники. – М.: «Энергия», 1978.

4.   Н. В. Зернов, В. Г. Карпов. Теория радиотехнических цепей. – Л.: «Энергия», 1972.


Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.