скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты



3.4 Определение молекулярной массы.

Молекулярную массу ферментов Penicillium wortmannii 2091 определяли методом гель-фильтрации на сефадексе У-100 [8].

Установлено, что соотношение объёма элюента, необходимого для выноса исследуемого белка из колонки (V – объём элюента) и объёма элюата, размещающемся в свободном (не занятом гранулами сефадекса) пространстве колонки (V0 – свободный объём), обратно пропорционально величине молекулярной массы белка. Для расчёта использовали формулу:

LgM=5,941-0,847 V/V0

Молекулярная масса протеиназы 1 оказалась равной 34500, протеиназы 2 – 20800, т.е. обе фракции относятся к низкомолекулярным белкам.

3.5 Исследование процессов кислотной и термической инактивации.

Изучение термо- и рН-стабильности ферментов часто несёт прикладной характер.

Исследование этих характеристик проводится остаточной активностью фермента после выдержки его раствора в течение некоторого времени при определённых рН и температуре [11].

Нами были проведены исследования кинетики кислотной и термической инактивации протеиназ Penicillium wortmannii 2091 и рассчитаны кинетические параметры этого процесса.

При изучении термо- и рН –стабильности раствор препарата выдерживали в фосфатном буфере в диапазоне рН от 5,0 до 12,0 и температур от 30 до 60оС. Периодически отбирали аликвотные доли раствора и определяли остаточную протеолитическую активность.

Полученные результаты по инактивации обоих ферментов показали, что протеиназа 1 сохраняет активность в широком диапазоне рН. При значении рН 7,0 через 200 часов фермент сохраняет около 90% активности (рис.4). При значениях рН 6,0 – 9,0 активность фермента снижается до 70 – 75%, это указывает на то, что фермент в указанном интервале не подвержен автолизу, а, следовательно, его нативная конформация обладает высокой стабильностью. При значениях рН ниже 6,0 и выше 11,0 каталитическая активность фермента быстро снижается.

Во всех случаях ПА/КлА-const, это свидетельствует о том, что мы имеем дело с одним ферментом.

Термическую инактивацию протеиназ изучали в интервале температур 30 – 60оС. Протеиназа 1 в области высокой рН-стабильности инактивируется почти полностью при температуре 60оС в течение 60 часов, в то время как протеиназа 2 при этой же температуре инактивируется полностью уже за 3 часа. Данные свидетельствуют о высокой термостабильности протеиназы 1. Инактивация протеиназы 2, происходящая при высокой температуре, по-видимому, определяется процессом разворачивания белковой глобулы.

Протеиназа 1, обладающая коллагенолитическим действием, нас интересует с практической точки зрения, поэтому были рассчитаны некоторые кинетические характеристики для этого фермента.

Если предположить, что в каждом элементарном акте процесса инактивации фермента под действием Н+ - ионов участвует одна его молекула, то кислотную инактивацию можно представить в виде реакции первого порядка. Кинетическое уравнение первого порядка имеет вид:

2,303 lg E0/E=K,

    где Е0 – исходная активность фермента

Е – активность в момент времени

К – константа скорости инактивации, характеризующая потерю активности в течение часа, час-1.


Рис. 4. Динамика кислотной инактивации протеиназы I.

 



Остаточную активность выражали в процентах от исходной и затем использовали в расчётах констант инактивации. Величину находили, как среднее из 5 – 6 определений (табл.2).

Таблица 2.

Кислотная инактивация протеиназы 1 при температуре 500С.

t, ч Значения рН
5,0 7,0 9,0 11,0
Е

К*103ч-1

Е

К*103ч-1

Е

К*103ч-1

Е

К*103ч-1

0 100 2 100 2 100 2 100 2
12 65,1 37,0 100 2 100 2 63,2 38,1
24 45,2 33,6 92,3 2,33 92,3 2,33 42,3 36,0
48 16,8 37,7 88,0 2,54 87,8 2,54 18,1 36,3
96 7,6 36,8 81,0 2,23 81,5 2,19 7,0 37,1
120 6,7 35,7 66,3 2,50 68,2 2,30 6,5 37,7
144 6,5 33,1 62,2 2,56 60,9 2,54 6,0 34,0

Как видно из табл.2, при определённом рН, значения констант достаточно близки друг к другу, максимальное отклонение от средних значений не превышает 10 – 15%, что вполне допустимо в исследованиях кинетики химических реакций. Это свидетельствует о том, что процесс инактивации протеиназы 1 является реакцией первого порядка. Различия в значениях при рН 5,0 и 11,0 и при рН  7,0 – 10,0 на целый порядок ещё раз указывают на лабильность фермента в слабо - кислой и слабо - щелочной зонах.

Исследования термической инактивации протеиназы 1 при различных значениях рН позволили рассчитать константы инактивации для температур 30, 40, 50, 60оС, а затем найти термодинамические параметры этого процесса.

Термодинамические расчёты были проведены только для вышеуказанных температур (табл.3).

Таблица 3.

Термодинамические характеристики активированного комплекса

протеиназы I.

t, oC

PH

Еакт

DН¹

DF¹

DS

Дж*К-1*моль-1

Дж*моль-1

30-60 5,0 245,8 244,6 53,2 600,3
30-40 7,0 75,6 72,0 68,1 13,6
40-60 7,0 300,5 298,2 60,0 734,9
30-40 9,0 72,4 71,0 69,9 9,9
40-60 9,0 295,9 294,1 60,0 723,9
30-40 11,0 255,9 253,6 54,9 624,3

Поскольку инактивация протеиназы была необратимой, для определения энтальпии DН¹, свободной энергии DF¹ и энтропии DS¹ воспользовались теорией абсолютных скоростей Эйринга.

При повышении температуры скорость инактивации возрастает. Это можно объяснить тем, что тепловая энергия разрушает гидрофобные взаимодействия, которые играют важную роль в стабильности белков. В результате происходит развёртывание полипептидной цепи, что подтверждается высокими значениями DS¹ и согласуется с литературными данными.

Таким образом, изменение величины рН вызывает разрушение электростатических сил, и решающую роль в этих условиях в процессе инактивации играют, по-видимому, гидрофобные взаимодействия.

 

3.6 Влияние ионов металлов и ингибиторов на активный центр фермента.

Главным признаком, используемым при отношении протеолитических ферментов к тому или иному классу, является строение каталитического центра.

Отправной точкой в изучении строения активного центра, механизма катализа является идентификация функциональных групп, что достигается комплексными исследованиями и, в первую очередь, применением специфических ингибиторов. В наших опытах в качестве ингибиторов были использованы ЭДТА, монойодуксусная кислота, n-хлормеркурийбензоат натрия, фенилметилсульфатонилфторид, диизопропилфторфосфат, перманганат калия.

Растворы ферментов, содержащие 5×10-3М этих соединений, выдерживали при 30оС в течение одного часа.

Как показали результаты опытов, протеиназа 1 полностью инактивировалась ЭДТА – ингибитором металлоферментов, остальные ферменты не изменяли протеолитическую активность.

Протеиназа 2 инактивировалась монойодуксусной кислотой и n-хлормеркурийбензоатом натрия на 84 и 63% соответственно. Фермент терял активность при воздействии фенилметилсульфатонилфторидом и диизопропилфторфосфатом, это даёт возможность предположить, что протеиназа 2 относится к «сериновым». Не оказывал влияния не на одну из протеиназ перманганат калия, что свидетельствует об отсутствии в активном центре карбоксильной группы.

На основе полученных данных можно предположить, что протеиназа 1 относится к  «металлоферментам», а протеиназа 2 – к «сериновым».

В дальнейшем было интересно рассмотреть влияние на протеиназы гистидина. На протеиназу 2 он не оказывал ингибирующего действия, в то время как полностью ингибировал протеолитическую и коллагеназную активности протеиназы 1. Из литературы известно, что гистидин является ингибитором коллагеназ. В связи с чем очевидно, что протеиназа 1 является ферментом, проявляющим свойства протеиназы с коллагеназным действием..

К специфическим реагентам относятся также ионы металлов. Они могут оказывать ингибирующий или активирующий эффект. В наших опытах мы использовали соли двухвалентных металлов в виде хлоридов и концентрации 0,005М. Фермент выдерживали в соли, а затем определяли остаточную активность. Ионы Mn2+, Ca2+, Ba2+ практически не оказывали никакого влияния на активность обеих протеиназ; Zn2+, Co2+ незначительно ингибировали оба фермента, ионы Cd2+, Cu2+ ингибировали протеиназу 1, а протеиназа 2 ингибировалась ионами Fe2+, Ni2+, Cd2+, Cu2+ . Результаты представлены в таблице 4.  

Таблица 4.

Влияние ионов металлов на активность протеиназ Penicillium wortmannii 2091.

Ион металла С=0,005М Ферментная активность, % от исходной.
Протеиназа I Протеиназа II

Mn2+

100,0 95,39

Ca2+

100,0 100,0

Ba2+

100,0 100,0

Zn2+

95,2 95,2

Co2+

93,9 95,2

Cu2+

34,5 19,2

Cd2+

20,4 20,8

Ni2+

98,5 67,5

Fe2+

97,9 44,9

3.7 Субстратная специфичность.

В изучении протеолитических ферментов значительное место занимают исследования специфичности их действия. В литературе нет сведений, касающихся вопроса специфичности действия протеиназ грибов рода Penicillium. В связи с этим исследовалась способность протеиназы 1 к гидролизу некоторых пептидных связей.

Исследования проводили на синтетических пептидах и различных белках. Результаты показали, что протеиназа 1 гидролизовала довольно широкий спектр пептидных связей. Она разрывала связи в пептидах: цис – ала, про – ала, гли – лей, гли – мет, ала – гли – гли, ала – гли – фен. Следует отметить, что гидролизу подвергались связи, характерные для белков животного происхождения. В связи с этим мы исследовали специфичность действия протеиназы на животных белках. В качестве субстратов использовались: казеин, гемоглобиин, денатурированный мочевиной, кератин, коллаген, желатина. При одной и той же концентрации фермента наиболее активно расщепляется казеин (78 – 80%) и гемоглобин (60 – 62%), затем слабее желатина и коллаген. Менее всего гидролизу подвергается кератин (22 – 25%) (рис.5).

3.8 Гидролиз коллагенсодержащего сырья: ноги птиц, шквара.

Мясная промышленность располагает значительным количеством шквары, получаемой при перетопке говяжьего и свиного жиросырья. Анализ химического состава шквары свидетельствует о значительном содержании в ней белковых веществ и подтверждает целесообразность её использования как в колбасном, так и ряде других производств. Общее содержание белка в шкваре колеблется в пределах 65 – 80%. В состав белков входят 22 – 44% коллагена и 19 – 30% эластина.  Однако использование шквары ограничивалось из-за большого содержания соединительной ткани. В настоящее время соединительную ткань рассматривают не как билластное вещество, а как необходимый компонент питания [10]. В связи с этим возрастает практический интерес к рациональному и полному использованию шквары на пищевые цели, разработке путей повышения её биологической ценности. Это направление явилось основой разрабатываемой нами темы.

Для получения гидролиза шквары целесообразно использование протеиназ, расщепляющих белки в нейтральной зоне рН и действующих на коллаген.

Рис. 5. Динамика гидролиза различных белков препаратом

              протеиназ Pen. wortmannii 2091:

              1 – казеин; 2 – гемоглобин; 3 – желатина;

              4 – коллаген; 5 – кератин.

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.